RESUMO
BACKGROUND: Colorectal Cancer (CRC) is one of the top three malignancies with the highest incidence and mortality. OBJECTIVE: The study aimed to identify the effect of Traditional Chinese Medicine (TCM) on postoperative patients with stage II-III CRC and explore the core herb combination and its mechanism. METHODS: An observational cohort study was conducted on patients diagnosed with stage II-III CRC from January 2016 to January 2021. The primary outcome was disease-free survival, which was compared between the patients who received TCM or not, and the secondary outcome was the hazard ratio. The relevance principle was used to obtain the candidate herb combinations, and the core combination was evaluated through an assessment of efficacy and representativeness. Then, biological processes and signaling pathways associated with CRC were obtained by Gene Ontology function, Kyoto Encyclopedia of Gene and Genomes pathway, and Wikipathway. Furthermore, hub genes were screened by the Kaplan-Meier estimator, and molecular docking was employed to predict the binding sites of key ingredients to hub genes. The correlation analysis was employed for the correlations between the hub genes and tumor-infiltrating immune cells and hypoxiarelated genes. Ultimately, a quantitative polymerase chain reaction was performed to verify the regulation of hub genes by their major ingredients. RESULTS: A total of 707 patients were included. TCM could decrease the metastatic recurrence associated with stage II-III CRC (HR: 0.61, log-rank P < 0.05). Among those patients in the TCM group, the core combination was Baizhu â Yinchen, Chenpi, and Fuling (C combination), and its antitumor mechanism was most likely related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients, quercetin and tangeretin. The expression of these genes was significantly correlated with both tumor-infiltrating immune cells and hypoxia- related genes. In addition, quercetin and tangeretin down-regulated the mRNA levels of BCL2L1, XIAP, and TOP1, thereby inhibiting the growth of HCT116 cells. CONCLUSION: Overall, a combination of four herbs, Baizhu â Yinchen, Chenpi, and Fuling, could reduce metastatic recurrence in postoperative patients with stage II-III CRC. The mechanism may be related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients quercetin and tangeretin.
Assuntos
Neoplasias Colorretais , Biologia Computacional , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Estadiamento de Neoplasias , Microambiente Tumoral/efeitos dos fármacos , Metástase Neoplásica , Recidiva Local de Neoplasia/prevenção & controle , Estudos de Coortes , Medicina Tradicional ChinesaRESUMO
Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. NSCLC patients often have poor prognosis demanding urgent identification of novel biomarkers and potential therapeutic targets. KCNAB2 (regulatory beta subunit2 of voltage-gated potassium channel), encoding aldosterone reductase, plays a pivotal role in regulating potassium channel activity. In this research, we tested the expression of KCNAB2 as well as its potential functions in human NSCLC. Bioinformatics analysis shows that expression of KCNAB2 mRNA is significantly downregulated in human NSCLC, correlating with poor overall survival. In addition, decreased KCNAB2 expression was detected in different NSCLC cell lines and local human NSCLC tissues. Exogenous overexpression of KCNAB2 potently suppressed growth, proliferation and motility of established human NSCLC cells and promoted NSCLC cells apoptosis. In contrast, CRISPR/Cas9-induced KCNAB2 knockout further promoted the malignant biological behaviors of NSCLC cells. Protein chip analysis in the KCNAB2-overexpressed NSCLC cells revealed that KCNAB2 plays a possible role in AKT-mTOR cascade activation. Indeed, AKT-mTOR signaling activation was potently inhibited following KCNAB2 overexpression in NSCLC cells. It was however augmented by KCNAB2 knockout. In vivo, the growth of subcutaneous KCNAB2-overexpressed A549 xenografts was significantly inhibited. Collectively, KCNAB2 could be a novel effective gene for prognosis prediction of NSCLC. Targeting KCNAB2 may lead to the development of advanced therapies.
RESUMO
Polymethyl methacrylate (PMMA) bone cement (PBC) is commonly used in orthopaedic surgery. However, polymerization volumetric shrinkage, exothermic injury, and low bioactivity prevent PBC from being an ideal material. The developed expandable P(MMA-AA-St) well overcomes the volumetric shrinkage of PBC. However, its biomechanical properties are unsatisfactory. Herein, graphene oxide (GO), a hydrophilic material with favourable biomechanics and osteogenic capability, was added to P(MMA-AA-St) to optimize its biomechanics and bioactivity. The GO-modified self-expandable P(MMA-AA-St)-GO nanocomposite (PGBCs) exhibited outstanding compressive strength (>70 âMPa), water absorption, and volume expansion, as well as a longer handling time and a reduced setting temperature. The cytocompatibility of PGBCs was superior to that of PBC, as demonstrated by CCK-8 assay, live-dead cell staining, and flow cytometry. In addition, better osteoblast attachment was observed, which could be attributed to the effects of GO. The improved level of osteogenic gene and protein expression further illustrated the improved cell-material interactions between osteoblasts and PGBCs. The results of an in vivo study performed by filling bone defects in the femoral condyles of rabbits with PGBCs demonstrated promising intraoperative handling properties and convenient implantation. Blood testing and histological staining demonstrated satisfactory in vivo biosafety. Furthermore, bone morphological and microarchitecture analyses using bone tissue staining and micro-CT scanning revealed better bone-PGBCs contact and osteogenic capability. The results of this study indicate that GO modification improved the physiochemical properties, cytocompatibility, and osteogenic capability of P(MMA-AA-St) and overcame the drawbacks of PBC, allowing its material derivatives to serve as effective implantable biomaterials.
Assuntos
Neoplasias da Mama , Recursos Humanos de Enfermagem , Humanos , Feminino , Educação em SaúdeRESUMO
In the present work, a delicate CFD research of a multi-street canyon model with varying thermal stratifications and non-uniformities of buildings was conducted to investigate the street ventilation and pollutant dispersion between the compact urban blocks. Non-isothermal turbulent wind flow, temperature field and pollutant dispersion in a two-dimensional computational domain were solved by the Renormalization Group (RNG) k-ε turbulence model along with the enhanced wall treatment. Present numerical results indicated that the variation of ground heating intensity has a significant influence on the airflow pattern in the step-down case, and the distribution of pollutants in the street canyons mainly depends on the variation of the upper clockwise vortex. The canyon ventilation performance became better as the unstable thermal stratification strengthened. Similarly, the increase of ground heating intensity could reduce ADF (atmospheric dispersion factor) in the step-down case and ADF became the lowest when Ri = -3.92 was maintained. Additionally, the increase of building unevenness further complicated the canyon airflow structure, which aggravated the pollution of the canyon. In the step-down configuration, as the standard deviation of adjacent building height gradually increases, canyon ventilation could be further enhanced. For the step-up configuration, the best ventilation performance was found at σH = 16.7 %. ADF of adjacent canyons also varied greatly. When σH = 33.3 % was maintained, the peak and bottom values of ADF were discovered in the step-up and step-down cases, respectively. Present research has provided a theoretical reference for guiding urban design and improve living environment in modern compact cities.