Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2879, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570506

RESUMO

Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.


Assuntos
Linfoma Difuso de Grandes Células B , Animais , Camundongos , Linfócitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centro Germinativo/metabolismo , Linfoma Difuso de Grandes Células B/genética , Mutação , Microambiente Tumoral/genética
2.
Cancer Lett ; 575: 216404, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37739210

RESUMO

Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1. Furthermore, we reveal that IRTKS recruits the deubiquitinase OTUD4 to remove Lys48-linked polyubiquitination at K182/K1050 sites of SETDB1, thus blocking SETDB1 degradation via the ubiquitin-proteasome pathway. Interestingly, the enhanced IRTKS-OTUD4-SETDB1-H3K9me3 axis leads to a general decrease in chromatin accessibility, which inhibits transcription of CDH1 encoding E-cadherin, a key molecule essential for maintaining epithelial cell phenotype, and therefore results in epithelial-mesenchymal transition (EMT) and malignant cell metastasis. Clinically, the elevated IRTKS levels in tumor specimens correlate with SETDB1 levels, but negatively associate with survival time. Our data reveal a novel mechanism for the IRTKS-enhanced tumor progression, where IRTKS cooperates with OTUD4 to enhance SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. This study also provides a potential approach to reduce the activity and stability of the known therapeutic target SETDB1 possibly through regulating IRTKS or deubiquitinase OTUD4.

4.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627428

RESUMO

Metabolism-mediated epigenetic changes represent an adapted mechanism for cellular signaling, in which lysine acetylation and methylation have been the historical focus of interest. We recently discovered a ß-hydroxybutyrate-mediated epigenetic pathway that couples metabolism to gene expression. However, its regulatory enzymes and substrate proteins remain unknown, hindering its functional study. Here, we report that the acyltransferase p300 can catalyze the enzymatic addition of ß-hydroxybutyrate to lysine (Kbhb), while histone deacetylase 1 (HDAC1) and HDAC2 enzymatically remove Kbhb. We demonstrate that p300-dependent histone Kbhb can directly mediate in vitro transcription. Moreover, a comprehensive analysis of Kbhb substrates in mammalian cells has identified 3248 Kbhb sites on 1397 substrate proteins. The dependence of histone Kbhb on p300 argues that enzyme-catalyzed acylation is the major mechanism for nuclear Kbhb. Our study thus reveals key regulatory elements for the Kbhb pathway, laying a foundation for studying its roles in diverse cellular processes.


Assuntos
Histonas , Lisina , Ácido 3-Hidroxibutírico/metabolismo , Acetilação , Animais , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional
5.
Nature ; 574(7779): 575-580, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645732

RESUMO

The Warburg effect, which originally described increased production of lactate in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, polarization of macrophages and activation of T cells. This phenomenon is intimately linked to several diseases including neoplasia, sepsis and autoimmune diseases1,2. Lactate, which is converted from pyruvate in tumour cells, is widely known as an energy source and metabolic by-product. However, its non-metabolic functions in physiology and disease remain unknown. Here we show that lactate-derived lactylation of histone lysine residues serves as an epigenetic modification that directly stimulates gene transcription from chromatin. We identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce the production of lactate by glycolysis, and this acts as a precursor that stimulates histone lactylation. Using M1 macrophages that have been exposed to bacteria as a model system, we show that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, increased histone lactylation induces homeostatic genes that are involved in wound healing, including Arg1. Collectively, our results suggest that an endogenous 'lactate clock' in bacterially challenged M1 macrophages turns on gene expression to promote homeostasis. Histone lactylation thus represents an opportunity to improve our understanding of the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.


Assuntos
Epigênese Genética , Glicólise/genética , Histonas/química , Histonas/metabolismo , Ácido Láctico/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Homeostase , Humanos , Hipóxia/metabolismo , Lisina/química , Lisina/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Transcrição Gênica
7.
Mol Cell ; 70(4): 663-678.e6, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775581

RESUMO

Lysine 2-hydroxyisobutyrylation (Khib) is an evolutionarily conserved and widespread histone mark like lysine acetylation (Kac). Here we report that p300 functions as a lysine 2-hyroxyisobutyryltransferase to regulate glycolysis in response to nutritional cues. We discovered that p300 differentially regulates Khib and Kac on distinct lysine sites, with only 6 of the 149 p300-targeted Khib sites overlapping with the 693 p300-targeted Kac sites. We demonstrate that diverse cellular proteins, particularly glycolytic enzymes, are targeted by p300 for Khib, but not for Kac. Specifically, deletion of p300 significantly reduces Khib levels on several p300-dependent, Khib-specific sites on key glycolytic enzymes including ENO1, decreasing their catalytic activities. Consequently, p300-deficient cells have impaired glycolysis and are hypersensitive to glucose-depletion-induced cell death. Our study reveals an p300-catalyzed, Khib-specific molecular mechanism that regulates cellular glucose metabolism and further indicate that p300 has an intrinsic ability to select short-chain acyl-CoA-dependent protein substrates.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Glucose/metabolismo , Glicólise , Histonas/metabolismo , Hidroxibutiratos/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Acetilação , Proteína p300 Associada a E1A/genética , Histonas/genética , Humanos , Lisina/genética
9.
Mol Cell ; 67(2): 308-321.e6, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28732206

RESUMO

Enhancer activation is a critical step for gene activation. Here we report an epigenetic crosstalk at enhancers between the UTX (H3K27 demethylase)-MLL4 (H3K4 methyltransferase) complex and the histone acetyltransferase p300. We demonstrate that UTX, in a demethylase activity-independent manner, facilitates conversion of inactive enhancers in embryonic stem cells to an active (H3K4me1+/H3K27ac+) state by recruiting and coupling the enzymatic functions of MLL4 and p300. Loss of UTX leads to attenuated enhancer activity, characterized by reduced levels of H3K4me1 and H3K27ac as well as impaired transcription. The UTX-MLL4 complex enhances p300-dependent H3K27 acetylation through UTX-dependent stimulation of p300 recruitment, while MLL4-mediated H3K4 monomethylation, reciprocally, requires p300 function. Importantly, MLL4-generated H3K4me1 further enhances p300-dependent transcription. This work reveals a previously unrecognized cooperativity among enhancer-associated chromatin modulators, including a unique function for UTX, in establishing an "active enhancer landscape" and defines a detailed mechanism for the joint deposition of H3K4me1 and H3K27ac.


Assuntos
Cromatina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Células-Tronco Embrionárias/enzimologia , Elementos Facilitadores Genéticos , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Transcrição Gênica , Ativação Transcricional , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina , Proteína p300 Associada a E1A/genética , Retroalimentação Fisiológica , Redes Reguladoras de Genes , Células HEK293 , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Masculino , Metilação , Camundongos , Interferência de RNA , Transfecção
10.
Mol Cell ; 62(2): 169-180, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105113

RESUMO

Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features.


Assuntos
Butiratos/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Espermatócitos/metabolismo , Acetilação , Animais , Sítios de Ligação , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Estudo de Associação Genômica Ampla , Histonas/química , Histonas/genética , Lisina , Masculino , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Transcrição Gênica , Ativação Transcricional
11.
Mol Cell ; 62(2): 181-193, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105114

RESUMO

Recognition of histone covalent modifications by chromatin-binding protein modules ("readers") constitutes a major mechanism for epigenetic regulation, typified by bromodomains that bind acetyllysine. Non-acetyl histone lysine acylations (e.g., crotonylation, butyrylation, propionylation) have been recently identified, but readers that prefer these acylations have not been characterized. Here we report that the AF9 YEATS domain displays selectively higher binding affinity for crotonyllysine over acetyllysine. Structural studies revealed an extended aromatic sandwiching cage with crotonyl specificity arising from π-aromatic and hydrophobic interactions between crotonyl and aromatic rings. These features are conserved among the YEATS, but not the bromodomains. Using a cell-based model, we showed that AF9 co-localizes with crotonylated histone H3 and positively regulates gene expression in a YEATS domain-dependent manner. Our studies define the evolutionarily conserved YEATS domain as a family of crotonyllysine readers and specifically demonstrate that the YEATS domain of AF9 directly links histone crotonylation to active transcription.


Assuntos
Crotonatos/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Ativação Transcricional , Acetilação , Animais , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Epigênese Genética , Células HEK293 , Histonas/química , Histonas/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisina , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Domínios Proteicos , Células RAW 264.7 , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição , Transfecção
12.
Mol Cell ; 62(2): 194-206, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105115

RESUMO

Here we report the identification and verification of a ß-hydroxybutyrate-derived protein modification, lysine ß-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated ß-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters and that the increased H3K9bhb levels that occur during starvation are associated with genes upregulated in starvation-responsive metabolic pathways. Histone ß-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering a new avenue to study chromatin regulation and diverse functions of ß-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia.


Assuntos
Cetoacidose Diabética/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Histonas/metabolismo , Hidroxibutiratos/metabolismo , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Inanição/metabolismo , Animais , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Cetoacidose Diabética/induzido quimicamente , Cetoacidose Diabética/genética , Modelos Animais de Doenças , Epigênese Genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células HEK293 , Histonas/genética , Humanos , Lisina , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Inanição/genética , Estreptozocina
13.
Science ; 350(6266): 1383-6, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26659056

RESUMO

Release of promoter-proximal paused RNA polymerase II (Pol II) during early elongation is a critical step in transcriptional regulation in metazoan cells. Paused Pol II release is thought to require the kinase activity of cyclin-dependent kinase 9 (CDK9) for the phosphorylation of DRB sensitivity-inducing factor, negative elongation factor, and C-terminal domain (CTD) serine-2 of Pol II. We found that Pol II-associated factor 1 (PAF1) is a critical regulator of paused Pol II release, that positive transcription elongation factor b (P-TEFb) directly regulates the initial recruitment of PAF1 complex (PAF1C) to genes, and that the subsequent recruitment of CDK12 is dependent on PAF1C. These findings reveal cooperativity among P-TEFb, PAF1C, and CDK12 in pausing release and Pol II CTD phosphorylation.


Assuntos
Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Humanos , Proteínas Nucleares/genética , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/genética , Fatores de Transcrição/metabolismo
14.
Genes Dev ; 29(20): 2123-39, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26494788

RESUMO

RUNX1-RUNX1T1 (formerly AML1-ETO), a transcription factor generated by the t(8;21) translocation in acute myeloid leukemia (AML), dictates a leukemic program by increasing self-renewal and inhibiting differentiation. Here we demonstrate that the histone demethylase JMJD1C functions as a coactivator for RUNX1-RUNX1T1 and is required for its transcriptional program. JMJD1C is directly recruited by RUNX1-RUNX1T1 to its target genes and regulates their expression by maintaining low H3K9 dimethyl (H3K9me2) levels. Analyses in JMJD1C knockout mice also establish a JMJD1C requirement for RUNX1-RUNX1T1's ability to increase proliferation. We also show a critical role for JMJD1C in the survival of multiple human AML cell lines, suggesting that it is required for leukemic programs in different AML cell types through its association with key transcription factors.


Assuntos
Regulação Leucêmica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/fisiopatologia , Oxirredutases N-Desmetilantes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Mieloide Aguda/genética , Camundongos Knockout , Oxirredutases N-Desmetilantes/genética , Transporte Proteico/genética
15.
EMBO J ; 34(23): 2885-902, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26330467

RESUMO

The Mediator complex orchestrates multiple transcription factors with the Pol II apparatus for precise transcriptional control. However, its interplay with the surrounding chromatin remains poorly understood. Here, we analyze differential histone modifications between WT and MED23(-/-) (KO) cells and identify H2B mono-ubiquitination at lysine 120 (H2Bub) as a MED23-dependent histone modification. Using tandem affinity purification and mass spectrometry, we find that MED23 associates with the RNF20/40 complex, the enzyme for H2Bub, and show that this association is critical for the recruitment of RNF20/40 to chromatin. In a cell-free system, Mediator directly and substantially increases H2Bub on recombinant chromatin through its cooperation with RNF20/40 and the PAF complex. Integrative genome-wide analyses show that MED23 depletion specifically reduces H2Bub on a subset of MED23-controlled genes. Importantly, MED23-coupled H2Bub levels are oppositely regulated during myogenesis and lung carcinogenesis. In sum, these results establish a mechanistic link between the Mediator complex and a critical chromatin modification in coordinating transcription with cell growth and differentiation.


Assuntos
Histonas/metabolismo , Complexo Mediador/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Complexo Mediador/genética , Camundongos , Modelos Biológicos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia
16.
Proc Natl Acad Sci U S A ; 112(33): 10365-70, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240340

RESUMO

Ubiquitylation of histone H2B at lysine 120 (H2B-Ub) plays a critical role in transcriptional elongation, chromatin conformation, as well as the regulation of specific histone H3 methylations. Herein, we report a strategy for the site-specific chemical attachment of ubiquitin to preassembled nucleosomes. This allowed expedited structure-activity studies into how H2B-Ub regulates H3K79 methylation by the methyltransferase human Dot1. Through an alanine scan of the ubiquitin surface, we identified a functional hotspot on ubiquitin that is required for the stimulation of human Dot1 in vitro. Importantly, this result was validated in chromatin from isolated nuclei by using a synthetic biology strategy that allowed selective incorporation of the hotspot-deficient ubiquitin mutant into H2B. The ubiquitin hotspot additionally impacted the regulation of ySet1-mediated H3K4 methylation but was not required for H2B-Ub-induced impairment of chromatin fiber compaction. These data demonstrate the utility of applying chemical ligation technologies to preassembled chromatin and delineate the multifunctionality of ubiquitin as a histone posttranslational modification.


Assuntos
Cromatina/química , Histonas/química , Metiltransferases/química , Ubiquitina/química , Sequência de Aminoácidos , Epigênese Genética , Histona-Lisina N-Metiltransferase , Humanos , Lisina/química , Metilação , Mutação , Nucleossomos/química , Ligação Proteica , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Software , Relação Estrutura-Atividade , Propriedades de Superfície , Ubiquitinação
17.
Mol Cell ; 58(2): 203-15, 2015 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-25818647

RESUMO

Acetylation of histones at DNA regulatory elements plays a critical role in transcriptional activation. Histones are also modified by other acyl moieties, including crotonyl, yet the mechanisms that govern acetylation versus crotonylation and the functional consequences of this "choice" remain unclear. We show that the coactivator p300 has both crotonyltransferase and acetyltransferase activities, and that p300-catalyzed histone crotonylation directly stimulates transcription to a greater degree than histone acetylation. Levels of histone crotonylation are regulated by the cellular concentration of crotonyl-CoA, which can be altered through genetic and environmental perturbations. In a cell-based model of transcriptional activation, increasing or decreasing the cellular concentration of crotonyl-CoA leads to enhanced or diminished gene expression, respectively, which correlates with the levels of histone crotonylation flanking the regulatory elements of activated genes. Our findings support a general principle wherein differential histone acylation (i.e., acetylation versus crotonylation) couples cellular metabolism to the regulation of gene expression.


Assuntos
Acil Coenzima A/metabolismo , Proteína p300 Associada a E1A/metabolismo , Histonas/metabolismo , Macrófagos/imunologia , RNA Mensageiro/metabolismo , Ativação Transcricional , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilação , Acil Coenzima A/genética , Linhagem Celular , Sistema Livre de Células , Proteína p300 Associada a E1A/genética , Células HEK293 , Células HeLa , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Dados de Sequência Molecular
18.
Mol Cell Biol ; 33(24): 4936-46, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24126056

RESUMO

Trimethylated histone H3 lysine 4 (H3K4) and H3K27 generally mark transcriptionally active and repressive chromatins, respectively. In most cell types, these two modifications are mutually exclusive, and this segregation is crucial for the regulation of gene expression. However, how this anticorrelation is achieved has not been fully understood. Here, we show that removal of the H3K27 trimethyl mark facilitates recruitment of SET1-like H3K4 methyltransferase complexes to their target genes by eliciting a novel interaction between histone H3 and two common subunits, WDR5 and RBBP5, of SET1-like complexes. Consistent with this result, H3K27 trimethylation destabilizes interactions of H3 with SET1-like complexes and antagonizes their ability to carry out H3K4 trimethylation of peptide (H3 residues 1 to 36), histone octamer, and mononucleosome substrates. Altogether, our studies reveal that H3K27 trimethylation of histone H3 represses a previously unrecognized interaction between H3 and SET1-like complexes. This provides an important mechanism that directs the anticorrelation between H3K4 and H3K27 trimethylation.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Sítios de Ligação , Sobrevivência Celular , Proteínas de Ligação a DNA , Epigênese Genética , Células HEK293 , Células HeLa , Histona Desmetilases/metabolismo , Histonas/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ativação Transcricional , Tretinoína/fisiologia
19.
Nat Struct Mol Biol ; 20(10): 1156-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23995757

RESUMO

Although histone H3 Lys4 (H3K4) methylation is widely associated with gene activation, direct evidence for its causal role in transcription, through specific MLL family members, is scarce. Here we have purified a human MLL2 (Kmt2b) complex that is highly active in H3K4 methylation and chromatin transcription in a cell-free system. This effect requires S-adenosyl methionine and intact H3K4, thus establishing a direct and causal role for MLL2-mediated H3K4 methylation in transcription. We also show that human AKAP95, a chromatin-associated protein, physically and functionally associates with MLL complexes and directly enhances their methyltransferase activity. Ectopic AKAP95 stimulates expression of a chromosomal reporter gene in synergy with MLL1 or MLL2, whereas AKAP95 depletion impairs retinoic acid-mediated gene induction in embryonic stem cells. These results demonstrate an important role for AKAP95 in regulating histone methylation and gene expression, particularly during cell-fate transitions.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Neoplasias/fisiologia , Transcrição Gênica/fisiologia , Diferenciação Celular , Sistema Livre de Células , Cromatina/genética , Metilação de DNA , Células-Tronco Embrionárias/citologia , Genes Reporter , Histonas/metabolismo , Humanos
20.
Nature ; 500(7460): 93-7, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23812588

RESUMO

Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that 'read' the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1-ETO resides in and functions through a stable AML1-ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.


Assuntos
Transformação Celular Neoplásica , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Complexos Multiproteicos/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Divisão Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/química , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Proteínas de Fusão Oncogênica/química , Mutação Puntual , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteína 1 Parceira de Translocação de RUNX1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA