Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431913

RESUMO

Postmenopausal osteoporosis is a significant threat to human health globally. Genistein, a soy-derived isoflavone, is regarded as a promising anti-osteoporosis drug with the effects of promoting osteoblastogenesis and suppressing osteoclastogenesis. However, its oral bioavailability (6.8%) is limited by water solubility, intestinal permeability, and biotransformation. Fortunately, 8-prenelylated genistein (8PG), a derivative of genistein found in Erythrina Variegate, presented excellent predicted oral bioavailability (51.64%) with an improved osteoblastogenesis effect, although its effects on osteoclastogenesis and intestinal biotransformation were still unclear. In this study, an in vitro microbial transformation platform and UPLC-QTOF/MS analysis method were developed to explore the functional metabolites of 8PG. RANKL-induced RAW264.7 cells were utilized to evaluate the effects of 8PG on osteoclastogenesis. Our results showed that genistein was transformed into dihydrogenistein and 5-hydroxy equol, while 8PG metabolites were undetectable under the same conditions. The 8PG (10-6 M) was more potent in inhibiting osteoclastogenesis than genistein (10-5 M) and it down-regulated NFATC1, cSRC, MMP-9 and Cathepsin K. It was concluded that 8-prenyl plays an important role in influencing the osteoclast activity and intestinal biotransformation of 8PG, which provides evidence supporting the further development of 8PG as a good anti-osteoporosis agent.


Assuntos
Microbioma Gastrointestinal , Osteoporose , Humanos , Genisteína/farmacologia , Genisteína/metabolismo , Osteoclastos , Intestinos , Osteoporose/tratamento farmacológico
2.
J Ethnopharmacol ; 279: 114396, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34246738

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The overall therapeutic effect of traditional Chinese medicine formulae (TCMF) was achieved by the interactions of multiple components with multiple targets. However, current pharmacology research strategies have struggled to identify effective substance groups and encountered challenges in elucidating the underlying mechanisms of TCMF. AIM: In this study, a comprehensive strategy was proposed and applied to elucidate the interactions of the multiple components that underlie the functions of the famous TCMF: Xian-Ling-Gu-Bao (XLGB) capsule on bone metabolism in vivo and to elucidate the molecular mechanisms underlying the effects of XLGB on bone cells, especially on osteoblasts. METHODS: The efficacy of XLGB in the protection against bones loss in ovariectomized (OVX) rats was confirmed by Micro-CT analysis. The anti-osteoporosis mechanism involved in the systemic regulatory actions of XLGB was elucidated by transcriptome sequencing analysis on bone marrow mesenchymal stem cells isolated from OVX rats. Moreover, the components absorbed in XLGB-treated plasma were characterized by mass spectrometry analysis, and subsequently, a standardized preparation process of drug-containing plasma was established. The synergistic osteogenic effect of the multiple components in plasma was investigated by a combination and then knockout of components using pre-osteoblast MC3T3-E1 cells. In order to decipher the underlying mechanism of XLGB, the targets of the absorbed components on bone were predicted by target prediction and network pharmacology analysis, then several interactions were validated by biochemical and cell-based assay. RESULTS: A total of 18 genes, including HDC, CXCL1/2, TNF, IL6 and Il1b, were newly found to be the major target genes regulated by XLGB. Interestingly, we found that a combination of the three absorbed components, i.e. MSP, rather than their single form at the same concentration, stimulated the formation of calcified nodules in MC3T3-E1 cells, suggesting a synergistic effect of these components. Besides, target prediction and experimental validation confirmed the binding affinity of corylin and icaritin for estrogen receptor α and ß, the inhibitory activity of isobavachin and isobavachalcone on glycogen synthase kinase-3ß, and the inhibitory activity of isobavachalcone on cathepsin K. The cell-based assay further confirmed the result of the biochemical assay. A network that integrated absorbed components of XLGB-targets-perturbation genes-pathways against osteoporosis was established. CONCLUSION: Our current study provides a new systemic strategy for discovering active ingredient groups of TCM formulae and understanding their underlying mechanisms.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Osteoporose/prevenção & controle , Células 3T3 , Administração Oral , Animais , Densidade Óssea/efeitos dos fármacos , Células da Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Ovariectomia , Ligante RANK/farmacologia , Células RAW 264.7 , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Células-Tronco
3.
Food Funct ; 12(15): 7081-7091, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156051

RESUMO

Screening potential functional substances based on active compounds is still a challenge faced by researchers since hundreds and thousands of possible compounds exist in natural products (food, herb, etc.). In this study, an integrated strategy by a combination of structural similarity evaluation, ADME (absorption, distribution, metabolism, excretion) prediction, network pharmacology and experimental validation (SANE strategy) was proposed and applied to explore anti-adipogenesis substances. This strategy was divided into four parts: first, potential compounds were screened based on representative active compounds by similarity evaluation and ADME prediction. Second, the activity of targeted compounds was evaluated in vitro based on the molecular biology method. Third, network pharmacology was used to explore potential targets and pathways. Last, the core pharmacological mechanism was confirmed by modern pharmacology methods. As a result, 8-prenylgenistein (8PG) was screened with chemical structure similarity with genistein and improved ADME propriety. Meanwhile, 8PG was found to present significant anti-adipogenesis effects in pre-adipocyte 3T3-L1 cells and primary human bone marrow stromal cells (hBMSC). Through using methods including: chemical staining, functional assays, and Real time PCR, 8PG was found to present more potency than genistein in suppressing the adipocyte differentiation. Further, the potential pharmacological mechanism was predicted, and significant effects of 8PG on activating the Wnt/ß-catenin pathway in 3T3-L1 cells and hBMSC were confirmed by  immunoblotting in the absence/presence of signaling pathway blocker and immunofluorescence staining. A new insight for exploring more potent compounds based on accurate effect compounds is provided in our work. Moreover, a potential compound (8PG), suppressing adipogenesis, was also supplied.


Assuntos
Adipogenia/efeitos dos fármacos , Alimento Funcional , Preparações de Plantas , Células 3T3-L1 , Animais , Células Cultivadas , Genisteína/farmacologia , Humanos , Células-Tronco Mesenquimais , Camundongos , Farmacologia em Rede , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA