Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Yakugaku Zasshi ; 143(7): 607-616, 2023 Jul 01.
Artigo em Japonês | MEDLINE | ID: mdl-37225498

RESUMO

In today's world, where clinical options are ever increasing and patients' needs are more diverse, it is not possible to conclude that simply practicing medical care based on pathophysiological data and medical evidence is sufficient for patients, particularly in terms of seeing each patient as an individual. Medical professionals must maintain a close relationship with their patients and seek treatment and care methods that reflect the patient's values and views on life and death, based on their own ethics in medical care. Ethics education should be provided on a continuing basis from the beginning of medical/pharmacy school. However, ethics education in pharmacy departments is often delivered in a lecture format attended by many students and/or as group training using case studies and hypothetical situations, i.e., "paper" patients. With these teaching methods, there are limited opportunities for the students to foster a sense of ethics or to think deeply about their values and views on life and death with respect to the patients they care for. Therefore, in this study, we conducted ethics exercises for pharmacy students in a group study format using a documentary film of real patients who were facing death. By retrospectively analyzing the results of the questionnaires collected before and after the assignments and exercises, we verified the educational effects and changes in the students' sense of ethics from participating in the group learning exercise; moreover, our results revealed the insight gained by the students in examining the experiences and challenges faced by terminally ill patients.


Assuntos
Estudantes de Medicina , Estudantes de Farmácia , Humanos , Estudos Retrospectivos , Escolaridade , Aprendizagem , Currículo , Ética Médica
2.
J Biochem ; 173(5): 337-342, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36888972

RESUMO

N-(4-hydroxyphenyl)-retinamide (4-HPR) inhibits the dihydroceramide Δ4-desaturase 1 (DEGS1) enzymatic activity. We previously reported that 4-HPR suppresses the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) spike protein-mediated membrane fusion through a decrease in membrane fluidity in a DEGS1-independent manner. However, the precise mechanism underlying the inhibition of viral entry by 4-HPR remains unclear. In this study, we examined the role of reactive oxygen species (ROS) in the inhibition of membrane fusion by 4-HPR because 4-HPR is a well-known ROS-inducing agent. Intracellular ROS generation was found to be increased in the target cells in a cell-cell fusion assay after 4-HPR treatment, which was attenuated by the addition of the antioxidant, α-tocopherol (TCP). The reduction in membrane fusion susceptibility by 4-HPR treatment in the cell-cell fusion assay was alleviated by TCP addition. Furthermore, fluorescence recovery after photobleaching analysis showed that the lateral diffusion of glycosylphosphatidylinositol-anchored protein and SARS CoV-2 receptor was reduced by 4-HPR treatment and restored by TCP addition. These results indicate that the decrease in SARS-CoV-2 spike protein-mediated membrane fusion and membrane fluidity by 4-HPR was due to ROS generation. Taken together, these results demonstrate that ROS production is associated with the 4-HPR inhibitory effect on SARS-CoV-2 entry.


Assuntos
Antineoplásicos , COVID-19 , Fenretinida , Humanos , Fenretinida/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , SARS-CoV-2/metabolismo , Apoptose , Oxirredutases
3.
Biol Pharm Bull ; 46(2): 257-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724953

RESUMO

Platelet-activating factor acetylhydrolase (PAF-AH) hydrolyzes an acetyl ester at the sn-2 position of platelet-activating factor (PAF), thereby mediating a variety of biological functions. PAF-AH is found in three isoforms: Type I PAF-AH (PAF-AH I) and Type II PAF-AH (PAF-AH II) are intracellular enzymes whereas plasma PAF-AH is characterized by association with lipoprotein in plasma. PAF-AH I forms a tetramer constituted by two catalytic subunits (α1 and α2) with ß regulatory subunits. We recently showed that a deficiency of PAF-AH I catalytic subunits in male mice caused an increase of body weight, food intake, and white adipose tissue (WAT) weight. In this study, we examined whether the expression of this enzyme was altered in the differentiation of 3T3-L1 preadipocytes into adipocytes. The amount of PAF-AH I α1 subunit protein was significantly reduced in 3T3-L1 differentiation, while the amount of the PAF-AH I α2 subunit was not changed. Immunoprecipitation analysis of 3T3-L1 differentiation showed that the complex of PAF-AH I catalytic subunits was changed from α1/α2 heterodimer to α2/α2 homodimer. Our findings suggest that changes in PAF-AH I catalytic subunits are involved in adipocyte differentiation of 3T3-L1 and obesity in mice.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Fosfolipases A , Masculino , Camundongos , Animais , Fosfolipases A/metabolismo , Células 3T3-L1 , Domínio Catalítico , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Fator de Ativação de Plaquetas/metabolismo , Diferenciação Celular
4.
Virulence ; 13(1): 1985-2011, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36326715

RESUMO

Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.


Assuntos
Hanseníase , Mycobacterium leprae , Animais , Mycobacterium leprae/genética , Virulência , Quimioterapia Combinada , Hansenostáticos , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia
5.
Biol Pharm Bull ; 45(10): 1559-1563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184516

RESUMO

Dihydroceramide Δ4-desaturase 1 (DEGS1) enzymatic activity is inhibited with N-(4-hydroxyphenyl)-retinamide (4-HPR). We reported previously that 4-HPR suppresses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry through a DEGS1-independent mechanism. However, it remains unclear whether DEGS1 is involved in other SARS-CoV-2 infection processes, such as virus replication and release. Here we established DEGS1 knockout (KO) in VeroE6TMPRSS2 cells. No significant difference was observed in virus production in the culture supernatant between wild-type (WT) cells and DEGS1-KO cells, although the levels of dihydroceramide (DHCer), a DEGS1 substrate, were significantly higher in DEGS1-KO cells than WT cells. Furthermore, the virus-induced cytopathic effect was also observed in DEGS1-KO cells. Importantly, the EC50 value of 4-HPR in DEGS1-KO cells was almost identical to the value reported previously in WT cells. Our results indicated the lack of involvement of DEGS1 in SARS-CoV-2 infection.


Assuntos
COVID-19 , Fenretinida , Animais , Ceramidas , Chlorocebus aethiops , Ácidos Graxos Dessaturases , Fenretinida/farmacologia , Humanos , Oxirredutases , SARS-CoV-2 , Células Vero
6.
PLoS Negl Trop Dis ; 16(8): e0010672, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939511

RESUMO

Buruli ulcer is a chronic skin disease caused by a toxic lipid mycolactone produced by Mycobacterium ulcerans, which induces local skin tissue destruction and analgesia. However, the cytotoxicity pathway induced by mycolactone remains largely unknown. Here we investigated the mycolactone-induced cell death pathway by screening host factors using a genome-scale lenti-CRISPR mutagenesis assay in human premonocytic THP-1 cells. As a result, 884 genes were identified as candidates causing mycolactone-induced cell death, among which SEC61A1, the α-subunit of the Sec61 translocon complex, was the highest scoring. CRISPR/Cas9 genome editing of SEC61A1 in THP-1 cells suppressed mycolactone-induced endoplasmic reticulum stress, especially eIF2α phosphorylation, and caspase-dependent apoptosis. Although previous studies have reported that mycolactone targets SEC61A1 based on mutation screening and structural analysis in several cell lines, we have reconfirmed that SEC61A1 is a mycolactone target by genome-wide screening in THP-1 cells. These results shed light on the cytotoxicity of mycolactone and suggest that the inhibition of mycolactone activity or SEC61A1 downstream cascades will be a novel therapeutic modality to eliminate the harmful effects of mycolactone in addition to the 8-week antibiotic regimen of rifampicin and clarithromycin.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Apoptose , Úlcera de Buruli/microbiologia , Humanos , Macrolídeos/metabolismo , Mycobacterium ulcerans/metabolismo , Células THP-1
7.
Endocr J ; 69(10): 1217-1225, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35644541

RESUMO

Solute carrier family 26 member 7 (SLC26A7), identified as a causative gene for congenital hypothyroidism, was found to be a novel iodide transporter expressed on the apical side of the follicular epithelium of the thyroid. We recently showed that TSH suppressed the expression of SLC26A7 and induces its localization to the plasma membrane, where it functions. We also showed that the ability of TSH to induce thyroid hormone synthesis is completely reversed by an autocrine negative-feedback action of thyroglobulin (Tg) stored in the follicular lumen. In the present study, we investigated the potential effect of follicular Tg on SLC26A7 expression and found that follicular Tg significantly suppressed the promoter activity, mRNA level, and protein level of SLC26A7 in rat thyroid FRTL-5 cells. In addition, follicular Tg inhibited the ability of TSH to induce the membrane localization of SLC26A7. In rat thyroid sections, the expression of SLC26A7 was weaker in follicles with a higher concentration of Tg, as evidenced by immunofluorescence staining. These results indicate that Tg stored in the follicular lumen is a feedback suppressor of the expression and membrane localization of SLC26A7, thereby downregulating the transport of iodide into the follicular lumen.


Assuntos
Tireoglobulina , Células Epiteliais da Tireoide , Animais , Ratos , Antiporters/genética , Antiporters/metabolismo , Iodetos/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Tireoglobulina/genética , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Tireotropina/metabolismo
8.
Endocr J ; 69(10): 1261-1269, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35675983

RESUMO

Sulfonation is an important step in the metabolism of dopamine, estrogens, dehydroepiandrosterone, as well as thyroid hormones. However, the regulation of cytosolic sulfotransferases in the thyroid is not well understood. In a DNA microarray analysis of rat thyroid FRTL-5 cells, we found that the mRNA expression of 10 of 48 sulfotransferases was significantly altered by thyroid stimulating hormone (TSH), with that of sulfotransferase family 1A member 1 (SULT1A1) being the most significantly affected. Real-time PCR and Western blot analyses revealed that TSH, forskolin and dibutyryl cyclic AMP significantly suppressed SULT1A1 mRNA and protein levels in a time- and concentration-dependent manner. Moreover, immunofluorescence staining of FRTL-5 cells showed that SULT1A1 is localized in the perinuclear area in the absence of TSH but is spread throughout the cytoplasm with reduced fluorescence intensity in the presence of TSH. Sulfotransferase activity in FRTL-5 cells, measured using 3'-phosphoadenosine-5'-phosphosulfate as a donner and p-nitrophenol as an acceptor substrate, was significantly reduced by TSH. These findings suggest that the expression and activity of SULT1A1 are modulated by TSH in thyrocytes.


Assuntos
Células Epiteliais da Tireoide , Tireotropina , Ratos , Animais , Tireotropina/farmacologia , Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , RNA Mensageiro/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-35462067

RESUMO

Breast cancer is primarily classified into ductal and lobular types, as well as into noninvasive and invasive cancer. Invasive cancer involves lymphatic and hematogenous metastasis. In breast cancer patients with distant metastases, a neutrophil-derived serine protease; cathepsin G (Cat G), is highly expressed in breast cancer cells. Cat G induces cell migration and multicellular aggregation of MCF-7 human breast cancer cells; however, the mechanism is not clear. Recently, platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), the enzyme responsible for PAF degradation, was reported to be overexpressed in some tumor types, including pancreatic and breast cancers. In this study, we investigated whether PAF-AH is involved in Cat G-induced aggregation and migration of MCF-7 cells. We first showed that Cat G increased PAF-AH activity and elevated PAFAH1B2 expression in MCF-7 cells. The elevated expression of PAFAH1B2 was also observed in human breast cancer tissue specimens by immunohistochemical analysis. Furthermore, knockdown of PAFAH1B2 in MCF-7 cells suppressed the cell migration and aggregation induced by low concentrations, but not high concentrations, of Cat G. Carbamoyl PAF (cPAF), a nonhydrolyzable PAF analog, completely suppressed Cat G-induced migration of MCF-7 cells. In addition, PAF receptor (PAFR) inhibition induced cell migration of MCF-7 cells even in the absence of Cat G, suggesting that Cat G suppresses the activation of PAFR through enhanced PAF degradation due to elevated expression of PAFAH1B2 and thereby induces malignant phenotypes in MCF-7 cells. Our findings may lead to a novel therapeutic modality for treating breast cancer by modulating the activity of Cat G/PAF signaling.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Neoplasias da Mama , Catepsina G , Proteínas Associadas aos Microtúbulos , Fator de Ativação de Plaquetas , 1-Alquil-2-acetilglicerofosfocolina Esterase/biossíntese , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Neutrófilos/metabolismo , Neutrófilos/patologia , Fator de Ativação de Plaquetas/metabolismo
10.
Front Med (Lausanne) ; 8: 694376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746168

RESUMO

Leprosy reactions are acute inflammatory episodes that complicate the course of a Mycobacterium leprae infection and are the major cause of leprosy-associated pathology. Two types of leprosy reactions with relatively distinct pathogenesis and clinical features can occur: type 1 reaction, also known as reversal reaction, and type 2 reaction, also known as erythema nodosum leprosum. These acute nerve-destructive immune exacerbations often cause irreversible disabilities and deformities, especially when diagnosis is delayed. However, there is no diagnostic test to detect or predict leprosy reactions before the onset of clinical symptoms. Identification of biomarkers for leprosy reactions, which impede the development of symptoms or correlate with early-onset, will allow precise diagnosis and timely interventions to greatly improve the patients' quality of life. Here, we review the progress of research aimed at identifying biomarkers for leprosy reactions, including its correlation with not only immunity but also genetics, transcripts, and metabolites, providing an understanding of the immune dysfunction and inflammation that underly the pathogenesis of leprosy reactions. Nevertheless, no biomarkers that can reliably predict the subsequent occurrence of leprosy reactions from non-reactional patients and distinguish type I reaction from type II have yet been found.

11.
Biol Pharm Bull ; 44(7): 920-925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193688

RESUMO

Type I platelet-activating factor-acetylhydrolase (PAF-AH) forms a complex consisting of two catalytic subunits (α1 and/or α2) with a regulatory subunit (ß). Although this protein was discovered as an enzyme that degrades an acetyl ester linked at the sn-2 position of platelet-activating factor (PAF), its physiological function remains unknown. In this study, to examine whether knockout mice lacking the catalytic subunits of this enzyme showed a different phenotype from that of wild-type mice, we measured and compared the body weights of knockout mice and control mice. The body weights of knockout mice were significantly increased compared to those of the control mice during 6 to 20 weeks from birth. Food intake was also significantly increased in knockout mice compared with control mice during these periods. Since a decrease in testis weight was reported in the knockout mice, we expected a decrease in testosterone levels. We measured and compared the amounts of testosterone in the serum and testis of knockout and control mice using liquid chromatography-tandem mass spectrometry, and found that testosterone levels in both the serum and testis were significantly decreased in the knockout mice compared with the control mice. These results suggest that a deficiency of type I PAF-AH catalytic subunits causes an increase in body weight, in part, due to reduced testosterone levels in male mice.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/deficiência , Peso Corporal , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Tecido Adiposo Branco , Animais , Domínio Catalítico , Fígado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Testículo/anatomia & histologia , Testículo/metabolismo , Testosterona/sangue , Testosterona/metabolismo
12.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299217

RESUMO

The mycobacterial cell wall is composed of large amounts of lipids with varying moieties. Some mycobacteria species hijack host cells and promote lipid droplet accumulation to build the cellular environment essential for their intracellular survival. Thus, lipids are thought to be important for mycobacteria survival as well as for the invasion, parasitization, and proliferation within host cells. However, their physiological roles have not been fully elucidated. Recent studies have revealed that mycobacteria modulate the peroxisome proliferator-activated receptor (PPAR) signaling and utilize host-derived triacylglycerol (TAG) and cholesterol as both nutrient sources and evasion from the host immune system. In this review, we discuss recent findings that describe the activation of PPARs by mycobacterial infections and their role in determining the fate of bacilli by inducing lipid metabolism, anti-inflammatory function, and autophagy.


Assuntos
Infecções por Mycobacterium/microbiologia , Mycobacterium/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Autofagia/fisiologia , Colesterol/metabolismo , Humanos , Metabolismo dos Lipídeos , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/imunologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Transdução de Sinais
13.
J Virol ; 95(17): e0080721, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34106748

RESUMO

The membrane fusion between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host cells is essential for the initial step of infection; therefore, the host cell membrane components, including sphingolipids, influence the viral infection. We assessed several inhibitors of the enzymes pertaining to sphingolipid metabolism, against SARS-CoV-2 spike protein (S)-mediated cell-cell fusion and viral infection. N-(4-Hydroxyphenyl) retinamide (4-HPR), an inhibitor of dihydroceramide Δ4-desaturase 1 (DES1), suppressed cell-cell fusion and viral infection. The analysis of sphingolipid levels revealed that the inhibition efficiencies of cell-cell fusion and viral infection in 4-HPR-treated cells were consistent with an increased ratio of saturated sphinganine-based lipids to total sphingolipids. We investigated the relationship of DES1 with the inhibition efficiencies of cell-cell fusion. The changes in the sphingolipid profile induced by 4-HPR were mitigated by the supplementation with exogenous cell-permeative ceramide; however, the reduced cell-cell fusion could not be reversed. The efficiency of cell-cell fusion in DES1 knockout (KO) cells was at a level comparable to that in wild-type (WT) cells; however, the ratio of saturated sphinganine-based lipids to the total sphingolipids was higher in DES1 KO cells than in WT cells. 4-HPR reduced cell membrane fluidity without any significant effects on the expression or localization of angiotensin-converting enzyme 2, the SARS-CoV-2 receptor. Therefore, 4-HPR suppresses SARS-CoV-2 S-mediated membrane fusion through a DES1-independent mechanism, and this decrease in membrane fluidity induced by 4-HPR could be the major cause for the inhibition of SARS-CoV-2 infection. IMPORTANCE Sphingolipids could play an important role in SARS-CoV-2 S-mediated membrane fusion with host cells. We studied the cell-cell fusion using SARS-CoV-2 S-expressing cells and sphingolipid-manipulated target cells, with an inhibitor of the sphingolipid metabolism. 4-HPR (also known as fenretinide) is an inhibitor of DES1, and it exhibits antitumor activity and suppresses cell-cell fusion and viral infection. 4-HPR suppresses membrane fusion through a decrease in membrane fluidity, which could possibly be the cause for the inhibition of SARS-CoV-2 infection. There is accumulating clinical data on the safety of 4-HPR. Therefore, it could be a potential candidate drug against COVID-19.


Assuntos
Membrana Celular/metabolismo , Fenretinida/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Oxirredutases/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Fusão Celular , Membrana Celular/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Fluidez de Membrana/genética , Oxirredutases/deficiência , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
14.
PLoS One ; 16(3): e0249184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33770127

RESUMO

Mycobacterium leprae (M. leprae) is the etiological agent of leprosy, and the skin lesions of lepromatous leprosy are filled with numerous foamy or xanthomatous histiocytes that are parasitized by M. leprae. Lipids are an important nutrient for the intracellular survival of M. leprae. In this study, we attempted to determine the intracellular lipid composition and underlying mechanisms for changes in host cell lipid metabolism induced by M. leprae infection. Using high-performance thin-layer chromatography (HPTLC), we demonstrated specific induction of triacylglycerol (TAG) production in human macrophage THP-1 cells following M. leprae infection. We then used [14C] stearic acid tracing to show incorporation of this newly synthesized host cell TAG into M. leprae. In parallel with TAG accumulation, expression of host glycerol-3-phosphate acyltransferase 3 (GPAT3), a key enzyme in de novo TAG synthesis, was significantly increased in M. leprae-infected cells. CRISPR/Cas9 genome editing of GPAT3 in THP-1 cells (GPAT3 KO) dramatically reduced accumulation of TAG following M. leprae infection, intracellular mycobacterial load, and bacteria viability. These results together suggest that M. leprae induces host GPAT3 expression to facilitate TAG accumulation within macrophages to maintain a suitable environment that is crucial for intracellular survival of these bacilli.


Assuntos
Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Fator de Transcrição STAT3/genética , Triglicerídeos/biossíntese , Linhagem Celular , Expressão Gênica , Humanos , Monócitos/citologia
15.
PLoS Negl Trop Dis ; 14(10): e0008850, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075048

RESUMO

Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae). In lepromatous leprosy (LL), skin macrophages, harboring extensive bacterial multiplication, gain a distinctive foamy appearance due to increased intracellular lipid load. To determine the mechanism by which M. leprae modifies the lipid homeostasis in host cells, an in vitro M. leprae infection system, using human macrophage precursor THP-1 cells and M. leprae prepared from the footpads of nude mice, was employed. RNA extracted from skin smear samples of patients was used to investigate host gene expressions before and after multidrug therapy (MDT). We found that a cluster of peroxisome proliferator-activated receptor (PPAR) target genes associated with adipocyte differentiation were strongly induced in M. leprae-infected THP-1 cells, with increased intracellular lipid accumulation. PPAR-δ and PPAR-γ expressions were induced by M. leprae infection in a bacterial load-dependent manner, and their proteins underwent nuclear translocalization after infection, indicating activation of PPAR signaling in host cells. Either PPAR-δ or PPAR-γ antagonist abolished the effect of M. leprae to modify host gene expressions and inhibited intracellular lipid accumulation in host cells. M. leprae-specific gene expressions were detected in the skin smear samples both before and after MDT, whereas PPAR target gene expressions were dramatically diminished after MDT. These results suggest that M. leprae infection activates host PPAR signaling to induce an array of adipocyte differentiation-associated genes, leading to accumulation of intracellular lipids to accommodate M. leprae parasitization. Certain PPAR target genes in skin lesions may serve as biomarkers for monitoring treatment efficacy.


Assuntos
Células Espumosas/microbiologia , Hanseníase/metabolismo , Macrófagos/microbiologia , Mycobacterium leprae/fisiologia , PPAR delta/metabolismo , PPAR gama/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipócitos/microbiologia , Animais , Diferenciação Celular , Células Espumosas/metabolismo , Humanos , Hansenostáticos/uso terapêutico , Hanseníase/tratamento farmacológico , Hanseníase/genética , Hanseníase/microbiologia , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Camundongos , Camundongos Nus , Mycobacterium leprae/efeitos dos fármacos , PPAR delta/genética , PPAR gama/genética , Pele/metabolismo , Pele/microbiologia
16.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813330

RESUMO

Acyl-CoA:glycerol-sn-3-phosphate acyltransferase (GPAT) is an enzyme responsible for the rate-limiting step in the synthesis of glycerophospholipids and triacylglycerol (TAG). The enzymes of mammalian species are classified into four isoforms; GPAT1 and GPAT2 are localized in the mitochondrial outer membrane, whereas GPAT3 and GPAT4 are localized in the endoplasmic reticulum membrane. The activity of each enzyme expressed is associated with physiological and pathological functions. The transcriptional regulation is well known, particularly in GPAT1. GPAT1 mRNA expression is mainly regulated by the binding of the transcriptional factor SREBP-1c to the specific element (the sterol regulatory element) flanking the GPAT1 promoter. The TAG level is controlled by the insulin-induced transcriptional expression of GPAT1, which occupies most of the GPAT activity in the liver. The transcriptional regulation of the other three GPAT isoforms remains undetermined in detail. It is predicted that retinoic acid serves as a transcription factor in the GPAT2 promoter. PPARγ (peroxisome proliferator-activated receptor γ) increases the mRNA expression of GPAT3, which is associated with TAG synthesis in adipose tissues. Although GPAT has been considered to be a key enzyme in the production of TAG, unexpected functions have recently been reported, particularly in GPAT2. It is likely that GPAT2 is associated with tumorigenesis and normal spermatogenesis. In this review, the physiological and pathophysiological roles of the four GPAT isoforms are described, alongside the transcriptional regulation of these enzymes.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Carcinogênese/patologia , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Humanos , Resistência à Insulina , Modelos Biológicos
17.
Sci Rep ; 8(1): 8218, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844323

RESUMO

Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a WHO-defined neglected tropical disease. All Japanese BU causative isolates have shown distinct differences from the prototype and are categorized as M. ulcerans subspecies shinshuense. During repeated sub-culture, we found that some M. shinshuense colonies were non-pigmented whereas others were pigmented. Whole genome sequence analysis revealed that non-pigmented colonies did not harbor a giant plasmid, which encodes elements needed for mycolactone toxin biosynthesis. Moreover, mycolactone was not detected in sterile filtrates of non-pigmented colonies. Mice inoculated with suspensions of pigmented colonies died within 5 weeks whereas those infected with suspensions of non-pigmented colonies had significantly prolonged survival (>8 weeks). This study suggests that mycolactone is a critical M. shinshuense virulence factor and that the lack of a mycolactone-producing giant plasmid makes the strain non-pathogenic. We made an avirulent mycolactone-deletion mutant strain directly from the virulent original.


Assuntos
Mycobacterium ulcerans/genética , Mycobacterium ulcerans/patogenicidade , Plasmídeos , Animais , Úlcera de Buruli/microbiologia , Úlcera de Buruli/patologia , Cromossomos Bacterianos , Meios de Cultura , Genes Bacterianos , Macrolídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium ulcerans/crescimento & desenvolvimento , Virulência/genética
18.
PLoS One ; 9(2): e88356, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516638

RESUMO

The Nabe-kaburi is a unique burial method, the purpose of which is shrouded in mystery. The burials were performed during the 15(th) to 18(th) centuries in eastern Japan, and involved covering the heads of the deceased with iron pots or mortars. The identification of leprosy-specific osteological lesions among some of the excavated remains has led to the suggestion that Nabe-kaburi burials were a reflection of the social stigma against certain infectious diseases, such as leprosy, tuberculosis or syphilis. However, molecular evidence for the presence of disease has been lacking. The goal of this study was to detect Mycobacterium leprae (M. leprae) DNA in archaeological human skeletal remains from Nabe-kaburi burials. The paleopathological data from three Nabe-kaburi burials were re-evaluated before small samples were taken from affected and control areas. DNA was extracted and used as a template to target the M. leprae-specific DNA using a combination of whole genome amplification, PCR analysis and DNA sequencing. M. leprae DNA fragments were detected in the two sets of skeletal remains that had also shown paleopathological evidence of leprosy. These findings provide definitive evidence that some of the Nabe-kaburi burials were performed for people affected by leprosy. Demonstration of the presence of M. leprae DNA, combined with archeological and anthropological examinations, will aid in solving the mystery of why Nabe-kaburi burials were performed in medieval Japan.


Assuntos
Osso e Ossos/microbiologia , Sepultamento/métodos , Hanseníase/diagnóstico , Mycobacterium leprae/isolamento & purificação , Adulto , Arqueologia , Humanos , Japão , Hanseníase/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
19.
Mol Endocrinol ; 28(3): 368-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24479877

RESUMO

Thyroglobulin (Tg), stored in the follicular lumen, has also been shown recently to perform two unexpected roles: as an autocrine negative-feedback suppressor of thyroid function in the presence of TSH and as a potent inducer of thyroid cell growth in the absence of TSH. However, the underlying molecular mechanism(s) remain unclear. To elucidate a molecular pathway linking Tg to increased cell proliferation, we examined the regulation of microRNAs (miRNAs) by Tg using an miRNA microarray. We identified 21 miRNAs whose expression was significantly suppressed by Tg in rat thyroid FRTL-5 cells. Using specific miRNA analogs, we determined that miR-16, miR-24, and miR-195 mediate the induction of thyroid cell growth by Tg. The expression of miR-16 and miR-195 target genes, Mapk8, Ccne1, and Cdc6, which were previously shown to be essential for TSH-stimulated thyroid cell growth, were also induced by Tg. Moreover, the Tg-induced expression of these genes was reduced by overexpression of miR-16 and miR-195. Similarly, the induction of c-Myc by Tg was reduced by miR-24 overexpression. These results suggest that Tg could alter thyroid cell proliferation by increasing the expression of cell division-related genes such as Mapk8, Ccne1, Cdc6, and c-Myc through its suppression of specific microRNAs (miR-16, miR-24, and miR-195). In addition, we identified phosphatidylinositol 3-kinase as a key signaling pathway, linking Tg with cell proliferation. The present data support an important role for miRNAs as effectors for the effect of Tg on cell proliferation and perhaps other functions of Tg in the thyroid cell.


Assuntos
Proliferação de Células , MicroRNAs/metabolismo , Tireoglobulina/fisiologia , Glândula Tireoide/citologia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Ratos , Transdução de Sinais , Transcriptoma
20.
Pathogens ; 2(4): 591-605, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25437334

RESUMO

The microflora in environmental water consists of a high density and diversity of bacterial species that form the foundation of the water ecosystem. Because the majority of these species cannot be cultured in vitro, a different approach is needed to identify prokaryotes in environmental water. A novel DNA microarray was developed as a simplified detection protocol. Multiple DNA probes were designed against each of the 97,927 sequences in the DNA Data Bank of Japan and mounted on a glass chip in duplicate. Evaluation of the microarray was performed using the DNA extracted from one liter of environmental water samples collected from seven sites in Japan. The extracted DNA was uniformly amplified using whole genome amplification (WGA), labeled with Cy3-conjugated 16S rRNA specific primers and hybridized to the microarray. The microarray successfully identified soil bacteria and environment-specific bacteria clusters. The DNA microarray described herein can be a useful tool in evaluating the diversity of prokaryotes and assessing environmental changes such as global warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA