RESUMO
We report a pediatric case of disseminated Bartonella henselae infection accompanied by multiple intracranial lesions. The patient developed multiple intracranial lesions despite treatment with azithromycin and gentamicin. After switching to rifampicin, the clinical symptoms of the patient improved. Given its good penetration into the central nervous system, rifampicin may be recommended for the treatment of B. henselae infection accompanied by intracranial lesions.
RESUMO
This paper presents the results of an experimental investigation on the material properties and self-healing ability of a blended cement mortar incorporating blast furnace slag (BFS). The effect of different types and Blaine fineness of BFS on the material properties and self-healing was investigated. Thirteen cement mixtures with BFS of different types and degrees of Blaine fineness are tested to evaluate the mechanical properties, namely compressive strength, bending strength, freeze-thaw, and accelerated carbonation. The pore structure is examined by means of mercury intrusion porosimetry. Seven blended mortar mixtures incorporating BFS for cement are used to evaluate the mechanical properties after applying freeze-thaw cycles until the relative dynamic modulus of elasticity reached 60%. The experimental results reveal that incorporating BFS improves the mechanical properties and self-healing ability. In the investigation of self-healing, smaller particle and high replacement ratios of BFS contribute to increasing the relative dynamic modulus of elasticity and decreasing the carbonation coefficient in the mortar after re-water curing. Moreover, BFS's larger particles and high replacement ratio are found to provide better self-healing ability. A regression equation is created to predict the relative dynamic modulus of elasticity in mortar considering the Blaine fineness, BFS replacement ratio, and curing conditions.
RESUMO
This study investigated the effect of temperature and time at temperatures lower than 0 °C on mortar mixed with antifreezing admixture to determine the temperature-time function with the aim of expressing the effect universally. As a result, the maturity equation for temperatures lower than 0 °C proposed in previous studies was verified to be applicable to type-B blast furnace slag cement. The applicability of this equation at temperatures lower than 0 °C had not been investigated hitherto. The strength development attributable to the effect of the antifreezing admixture can be expressed as the reference temperature, and the reduction in the chemical potential of water chemical potential reduction was found to depend on the reaction rate. A new maturity equation for temperatures lower than 0 °C was proposed considering the effect of the antifreezing admixture.