RESUMO
Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, but their distribution in actively translating human cells remains elusive. We used a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with high resolution. These structures revealed the distribution of functional states of the elongation cycle, a Z transfer RNA binding site, and the dynamics of ribosome expansion segments. Ribosome structures from cells treated with Homoharringtonine, a drug used against chronic myeloid leukemia, revealed how translation dynamics were altered in situ and resolve the small molecules within the active site of the ribosome. Thus, structural dynamics and drug effects can be assessed at high resolution within human cells.
Assuntos
Antineoplásicos , Neoplasias , Biossíntese de Proteínas , Humanos , Antineoplásicos/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Neoplasias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/química , Ribossomos/metabolismo , RNA de Transferência/metabolismoRESUMO
INTRODUCTION The eukaryotic nucleus pro-tects the genome and is enclosed by the two membranes of the nuclear envelope. Nuclear pore complexes (NPCs) perforate the nuclear envelope to facilitate nucleocytoplasmic transport. With a molecular weight of â¼120 MDa, the human NPC is one of the larg-est protein complexes. Its ~1000 proteins are taken in multiple copies from a set of about 30 distinct nucleoporins (NUPs). They can be roughly categorized into two classes. Scaf-fold NUPs contain folded domains and form a cylindrical scaffold architecture around a central channel. Intrinsically disordered NUPs line the scaffold and extend into the central channel, where they interact with cargo complexes. The NPC architecture is highly dynamic. It responds to changes in nuclear envelope tension with conforma-tional breathing that manifests in dilation and constriction movements. Elucidating the scaffold architecture, ultimately at atomic resolution, will be important for gaining a more precise understanding of NPC function and dynamics but imposes a substantial chal-lenge for structural biologists. RATIONALE Considerable progress has been made toward this goal by a joint effort in the field. A synergistic combination of complementary approaches has turned out to be critical. In situ structural biology techniques were used to reveal the overall layout of the NPC scaffold that defines the spatial reference for molecular modeling. High-resolution structures of many NUPs were determined in vitro. Proteomic analysis and extensive biochemical work unraveled the interaction network of NUPs. Integra-tive modeling has been used to combine the different types of data, resulting in a rough outline of the NPC scaffold. Previous struc-tural models of the human NPC, however, were patchy and limited in accuracy owing to several challenges: (i) Many of the high-resolution structures of individual NUPs have been solved from distantly related species and, consequently, do not comprehensively cover their human counterparts. (ii) The scaf-fold is interconnected by a set of intrinsically disordered linker NUPs that are not straight-forwardly accessible to common structural biology techniques. (iii) The NPC scaffold intimately embraces the fused inner and outer nuclear membranes in a distinctive topol-ogy and cannot be studied in isolation. (iv) The conformational dynamics of scaffold NUPs limits the resolution achievable in structure determination. RESULTS In this study, we used artificial intelligence (AI)-based prediction to generate an exten-sive repertoire of structural models of human NUPs and their subcomplexes. The resulting models cover various domains and interfaces that so far remained structurally uncharac-terized. Benchmarking against previous and unpublished x-ray and cryo-electron micros-copy structures revealed unprecedented accu-racy. We obtained well-resolved cryo-electron tomographic maps of both the constricted and dilated conformational states of the hu-man NPC. Using integrative modeling, we fit-ted the structural models of individual NUPs into the cryo-electron microscopy maps. We explicitly included several linker NUPs and traced their trajectory through the NPC scaf-fold. We elucidated in great detail how mem-brane-associated and transmembrane NUPs are distributed across the fusion topology of both nuclear membranes. The resulting architectural model increases the structural coverage of the human NPC scaffold by about twofold. We extensively validated our model against both earlier and new experimental data. The completeness of our model has enabled microsecond-long coarse-grained molecular dynamics simulations of the NPC scaffold within an explicit membrane en-vironment and solvent. These simulations reveal that the NPC scaffold prevents the constriction of the otherwise stable double-membrane fusion pore to small diameters in the absence of membrane tension. CONCLUSION Our 70-MDa atomically re-solved model covers >90% of the human NPC scaffold. It captures conforma-tional changes that occur during dilation and constriction. It also reveals the precise anchoring sites for intrinsically disordered NUPs, the identification of which is a prerequisite for a complete and dy-namic model of the NPC. Our study exempli-fies how AI-based structure prediction may accelerate the elucidation of subcellular ar-chitecture at atomic resolution. [Figure: see text].
Assuntos
Inteligência Artificial , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Transporte Ativo do Núcleo Celular , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Poro Nuclear/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , ProteômicaRESUMO
Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in optogenetics to control neural activity with light . Light absorption causes retinal chromophore isomerization and subsequent protein conformational changes visualized as optically distinguished intermediates, coupled with channel opening and closing. However, the detailed molecular events underlying channel gating remain unknown. We performed time-resolved serial femtosecond crystallographic analyses of ChR by using an X-ray free electron laser, which revealed conformational changes following photoactivation. The isomerized retinal adopts a twisted conformation and shifts toward the putative internal proton donor residues, consequently inducing an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore.
Assuntos
Proteínas de Algas/genética , Channelrhodopsins/genética , Chlamydomonas reinhardtii/genética , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cristalografia , Isomerismo , Conformação Proteica , Estrutura Secundária de Proteína , Alinhamento de SequênciaRESUMO
The iron ion is an essential cofactor in several vital enzymatic reactions, such as DNA replication, oxygen transport, and respiratory and photosynthetic electron transfer chains, but its excess accumulation induces oxidative stress in cells. Vacuolar iron transporter 1 (VIT1) is important for iron homeostasis in plants, by transporting cytoplasmic ferrous ions into vacuoles. Modification of the VIT1 gene leads to increased iron content in crops, which could be used for the treatment of human iron deficiency diseases. Furthermore, a VIT1 from the malaria-causing parasite Plasmodium is considered as a potential drug target for malaria. Here we report the crystal structure of VIT1 from rose gum Eucalyptus grandis, which probably functions as a H+-dependent antiporter for Fe2+ and other transition metal ions. VIT1 adopts a novel protein fold forming a dimer of five membrane-spanning domains, with an ion-translocating pathway constituted by the conserved methionine and carboxylate residues at the dimer interface. The second transmembrane helix protrudes from the lipid membrane by about 40 Å and connects to a three-helical bundle, triangular cytoplasmic domain, which binds to the substrate metal ions and stabilizes their soluble form, thus playing an essential role in their transport. These mechanistic insights will provide useful information for the further design of genetically modified crops and the development of anti-malaria drugs.
Assuntos
Proteínas de Transporte de Cátions/química , Óleo de Eucalipto/química , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , Ferro/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Vacúolos/metabolismoRESUMO
Channelrhodopsins are light-activated ion channels that mediate cation permeation across cell membranes upon light absorption. Red-light-activated channelrhodopsins are of particular interest, because red light penetrates deeper into biological tissues and also enables dual-color experiments in combination with blue-light-activated optogenetic tools. Here we report the crystal structure of the most red-shifted channelrhodopsin from the algae Chlamydomonas noctigama, Chrimson, at 2.6 Å resolution. Chrimson resembles prokaryotic proton pumps in the retinal binding pocket, while sharing similarity with other channelrhodopsins in the ion-conducting pore. Concomitant mutation analysis identified the structural features that are responsible for Chrimson's red light sensitivity; namely, the protonation of the counterion for the retinal Schiff base, and the polar residue distribution and rigidity of the retinal binding pocket. Based on these mechanistic insights, we engineered ChrimsonSA, a mutant with a maximum activation wavelength red-shifted beyond 605 nm and accelerated closing kinetics.
Assuntos
Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Chlamydomonas , Engenharia Genética , Estrutura Molecular , Prótons , Bases de Schiff/metabolismoRESUMO
Lysophosphatidic acid (LPA) is a bioactive lipid composed of a phosphate group, a glycerol backbone, and a single acyl chain that varies in length and saturation. LPA activates six class A G-protein-coupled receptors to provoke various cellular reactions. Because LPA signalling has been implicated in cancer and fibrosis, the LPA receptors are regarded as promising drug targets. The six LPA receptors are subdivided into the endothelial differentiation gene (EDG) family (LPA1-LPA3) and the phylogenetically distant non-EDG family (LPA4-LPA6). The structure of LPA1 has enhanced our understanding of the EDG family of LPA receptors. By contrast, the functional and pharmacological characteristics of the non-EDG family of LPA receptors have remained unknown, owing to the lack of structural information. Although the non-EDG LPA receptors share sequence similarity with the P2Y family of nucleotide receptors, the LPA recognition mechanism cannot be deduced from the P2Y1 and P2Y12 structures because of the large differences in the chemical structures of their ligands. Here we determine the 3.2 Å crystal structure of LPA6, the gene deletion of which is responsible for congenital hair loss, to clarify the ligand recognition mechanism of the non-EDG family of LPA receptors. Notably, the ligand-binding pocket of LPA6 is laterally open towards the membrane, and the acyl chain of the lipid used for the crystallization is bound within this pocket, indicating the binding mode of the LPA acyl chain. Docking and mutagenesis analyses also indicated that the conserved positively charged residues within the central cavity recognize the phosphate head group of LPA by inducing an inward shift of transmembrane helices 6 and 7, suggesting that the receptor activation is triggered by this conformational rearrangement.
Assuntos
Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , Alopecia/congênito , Alopecia/genética , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutagênese , Filogenia , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores de Ácidos Lisofosfatídicos/genética , Especificidade por Substrato , Peixe-Zebra/genéticaRESUMO
In vertebrates, the iron exporter ferroportin releases Fe(2+) from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin.
Assuntos
Bdellovibrio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/química , Humanos , Ferro/metabolismo , Conformação Proteica , Homologia Estrutural de ProteínaRESUMO
Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein-chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources.
Assuntos
Opsinas/química , Optogenética/métodos , Opsinas de Bastonetes/química , Animais , Encéfalo/metabolismo , Chlamydomonas reinhardtii/metabolismo , Simulação por Computador , Cristalografia por Raios X , Eletrofisiologia , Escherichia coli/metabolismo , Células HEK293 , Humanos , Íons , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação , Neurônios/metabolismo , Conformação Proteica , Engenharia de Proteínas , Rodopsina/química , Eletricidade EstáticaRESUMO
Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na(+) pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na(+) transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na(+) transport. Together with the structure-based engineering of the first light-driven K(+) pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.
Assuntos
Flavobacteriaceae/química , Bombas de Íon/química , Bombas de Íon/efeitos da radiação , Luz , Rodopsina/química , Rodopsina/efeitos da radiação , Sódio/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Bombas de Íon/genética , Bombas de Íon/metabolismo , Transporte de Íons/genética , Transporte de Íons/efeitos da radiação , Modelos Biológicos , Modelos Moleculares , Mutagênese/genética , Optogenética , Potássio/metabolismo , Conformação Proteica , Engenharia de Proteínas , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Bases de Schiff , Relação Estrutura-AtividadeRESUMO
Channelrhodopsin (ChR) functions as a light-gated ion channel in Chlamydomonas reinhardtii. Passive transport of cations by ChR is fundamentally different from the active transport by light-driven ion pumps such as archaerhodopsin, bacteriorhodopsin, and halorhodopsin. These microbial rhodopsins are important tools for optogenetics, where ChR is used to activate neurons by light, while the ion pumps are used for neural silencing. Ion-transport functions by these rhodopsins strongly depend on the specific hydrogen-bonding networks containing water near the retinal chromophore. In this work, we measured protein-bound water molecules in a chimeric ChR protein of ChR1 (helices A to E) and ChR2 (helices F and G) of Chlamydomonas reinhardtii using low-temperature FTIR spectroscopy at 77 K. We found that the active center of ChR possesses more water molecules (9 water vibrations) than those of other microbial (2-6 water vibrations) and animal (6-8 water vibrations) rhodopsins. We conclude that the protonated retinal Schiff base interacts with the counterion (Glu162) directly, without the intervening water molecule found in proton-pumping microbial rhodopsins. The present FTIR results and the recent X-ray structure of ChR reveal a unique hydrogen-bonding network around the active center of this light-gated ion channel.