RESUMO
The biaryl coupling of electron-deficient nitrogen heterocycles and haloarenes can be promoted by potassium t-butoxide alone, without the addition of any exogenous transition metal species. Electron-deficient nitrogen heterocycles such as pyridine, pyridazine, pyrimidine, pyrazine, and quinoxaline are arylated with haloarenes. Control experiments support a radical-based mechanism. Taking these findings into account, radical processes may be partially involved in the reported transition-metal-catalyzed arylation reactions employing t-butoxide bases and haloarenes under elevated temperatures or under microwave irradiation.
RESUMO
A new copper-mediated cross-coupling of arenes and arylboronic acids is described. Under the influence of Cu(OCOCF 3) 2, the C-H bond arylation of electron-rich arenes with arylboronic acids takes place to afford a range of biaryls in good yields. The reaction is selective for cross-coupling; no homocoupling product arising from arenes or arylboronic acids is detected. Multiple C-H bond arylation is possible with indoles and pyrroles furnishing interesting extended pi-systems.
Assuntos
Ácidos Borônicos/química , Cobre/química , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/síntese química , Compostos Organometálicos/química , Estrutura Molecular , EstereoisomerismoRESUMO
This paper describes a robust and sensitive method for the determination of arsenic species in seawater by ion-exclusion liquid chromatography (LC) combined with inductively coupled plasma mass spectrometry (ICP-MS) using reaction cell and hydride generation (HG) techniques. A good separation of arsenite, arsenate, and monomethylarsonic acid was achieved using an ion-exclusion column packed with a sulfonated polystyrene resin and a dilute nitric acid at pH 2.0 as the eluent, even when a large volume, i.e. 200 mul, of seawater samples containing a large amount of matrix was repeatedly injected. Separations of the chloride ion due to the matrix and arsenic species were partially performed; however, the extensive peak of ArCl due to high content of Cl(-) in a sample overlapped peaks of the three arsenic species on (75)As measurement by ICP-MS. This ArCl polyatomic interference was efficiently eliminated by collision of ArCl molecules with helium in an octopole reaction cell which was introduced prior to a mass spectrometer. Detection limits of the three arsenic species in a sample containing 2% Cl(-), the concentration of which is comparable to that in a seawater sample, by LC-ICP-MS with the octopole reaction system (ORS), ranged from 21 to 25 pg As ml(-1); these values were three-six times lower than those by LC-ICP-MS without ORS. As another technique for ArCl interference elimination, HG prior to ICP-MS was also successfully used not only to reduce the interference but also to improve the detection limits to 3.4-4.5 pg As ml(-1). The developed LC-ICP-ORS-MS and LC-HG-ICP-MS were validated by analyzing a certified reference material (CRM) of seawater. In addition, no serious decrease in analytical performance of present methods was observed in the experimental periods of half a year for LC-ICP-ORS-MS and 1 year for LC-HG-ICP-MS, respectively. The latter method was successfully applied to characterize seasonal variations of three arsenic species in deep seawater and surface seawater.