Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AIMS Allergy Immunol ; 5(3): 160-174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37885821

RESUMO

Atopic dermatitis (AD, eczema) is an inflammatory skin condition whose histopathology involves remodeling. Few preclinical AD studies are performed using male mice. The histopathological mechanisms underlying AD development were investigated here in male mice at a pre-lesional stage using a human AD-like mouse model. Hypodermal cellular infiltration without thickening of skin layers was observed after one epicutaneous exposure to antigen ovalbumin (OVA), compared to controls. In contrast to our previous report using female mice, OVA treatment did not activate skin mast cells (MC) or elevate sphingosine-1-phosphate (S1P) levels while increasing systemic but not local levels of CCL2, CCL3 and CCL5 chemokines. In contrast to the pathogenic AD mechanisms we recently uncovered in female, S1P-mediated skin MC activation with subsequent local chemokine production is not observed in male mice, supporting sex differences in pre-lesional stages of AD. We are proposing that differential involvement of the MC/S1P axis in early pathogenic skin changes contributes to the well documented yet still incompletely understood sex-dimorphic susceptibility to AD in humans.

2.
Free Radic Biol Med ; 148: 70-82, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31883977

RESUMO

C/EBP homologous protein (CHOP) is a transcription factor that is elevated in adipose tissue across many models of diabetes and metabolic stress. Although increased CHOP levels are associated with the terminal response to endoplasmic reticulum stress and apoptosis, there is no evidence for CHOP mediated apoptosis in the adipose tissue during diabetes. CHOP protein levels increase in parallel with protein succination, a fumarate derived cysteine modification, in the adipocyte during metabolic stress. We investigated the factors contributing to sustained CHOP proteins levels in the adipocyte, with an emphasis on the regulation of CHOP protein turnover by metabolite-driven modification of Keap1 cysteines. CHOP protein stability was investigated in conditions of nutrient stress due to high glucose or elevated fumarate (fumarase knockdown model); where cysteine succination is specifically elevated. CHOP protein turnover is significantly reduced in models of elevated glucose and fumarate with a ~30% increase in CHOP stability (p > 0.01), in part due to decreased CHOP phosphorylation. Sustained CHOP levels occur in parallel with elevated heme-oxygenase-1, a production of increased Nrf2 transcriptional activity and Keap1 modification. While Keap1 is directly succinated in the presence of excess fumarate derived from genetic knockdown of fumarase (fumarate levels are elevated >20-fold), it is the oxidative modification of Keap1 that predominates in adipocytes matured in high glucose (fumarate increases 4-5 fold). Elevated fumarate indirectly regulates CHOP stability through the induction of oxidative stress. The antioxidant N-acetylcysteine (NAC) reduces fumarate levels, protein succination and CHOP levels in adipocytes matured in high glucose. Elevated CHOP does not contribute elevated apoptosis in adipocytes, but plays a redox-dependent role in decreasing the adipocyte secretion of interleukin-13, an anti-inflammatory chemokine. NAC treatment restores adipocyte IL-13 secretion, confirming the redox-dependent regulation of a potent anti-inflammatory eotaxin. This study demonstrates that physiological increases in the metabolite fumarate during high glucose exposure contributes to the presence of oxidative stress and sustained CHOP levels in the adipocyte during diabetes. The results reveal a novel metabolic link between mitochondrial metabolic stress and reduced anti-inflammatory adipocyte signaling as a consequence of reduced CHOP protein turnover.


Assuntos
Fumaratos , Fator 2 Relacionado a NF-E2 , Adipócitos/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Estresse Oxidativo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
3.
Antioxid Redox Signal ; 27(16): 1281-1296, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28376661

RESUMO

AIMS: Protein succination by fumarate increases in the adipose tissue of diabetic mice and in adipocytes matured in high glucose as a result of glucotoxicity-driven mitochondrial stress. The endoplasmic reticulum (ER) oxidoreductase protein disulfide isomerase (PDI) is succinated in adipocytes that are matured in high glucose, and in this study we investigated whether succination would alter PDI oxidoreductase activity, directly linking mitochondrial stress and ER stress. RESULTS: Protein succination and the ER stress marker C/EBP homologous protein (CHOP) were diminished after pharmaceutical targeting of mitochondrial stress with the chemical uncoupler niclosamide in adipocytes matured in high-glucose concentrations. PDI was succinated by fumarate on both CXXC-containing active sites, contributing to reduced enzymatic activity. Succinated PDI decreased reductase activity in adipocytes matured in high glucose, and in db/db epididymal adipose tissue, in association with increased levels of CHOP. PDI succination was increased in fumarase knockdown adipocytes, leading to reduced PDI oxidoreductase activity, increased CHOP levels, and pro-inflammatory cytokine secretion, confirming the specific role of elevated fumarate levels in contributing to ER stress. In addition, PDI succination and ER stress were decreased, and PDI reductase activity was restored when exposure to chronic high glucose was limited, highlighting the importance of calorie restriction in the improvement of adipocyte metabolic function. INNOVATION: These experiments identify PDI succination as a novel biochemical mechanism linking altered mitochondrial metabolism to ER stress in the adipocyte during diabetes. CONCLUSION: The current study demonstrates that early biochemical changes in mitochondrial metabolism have important implications for the development of adipocyte stress. Antioxid. Redox Signal. 27, 1281-1296.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fumaratos/metabolismo , Mitocôndrias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Células 3T3-L1 , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Glucose/farmacologia , Camundongos , Niclosamida/farmacologia , Estresse Oxidativo , Isomerases de Dissulfetos de Proteínas/química , Fator de Transcrição CHOP/metabolismo
4.
Biochim Biophys Acta ; 1853(1): 213-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448036

RESUMO

While the 3T3-L1 adipocyte model is routinely used for the study of obesity and diabetes, the mitochondrial respiratory profile in normal versus high glucose has not been examined in detail. We matured adipocytes in normal (5mM) or high (30 mM) glucose and insulin and examined the mitochondrial bioenergetics. We also assessed the requirement for the Unfolded Protein Response (UPR) and ER stress under these conditions. Basal respiration was ~1.7-fold greater in adipocytes that had matured in 30 mM glucose; however, their ability to increase oxygen consumption in response to stress was impaired. Adipogenesis proceeded in both normal and high glucose with concomitant activation of the UPR, but only high glucose was associated with increased levels of ER stress and mitochondrial stress as observed by parallel increases in CHOP and protein succination. Treatment of adipocytes with sodium phenylbutyrate relieved mitochondrial stress through a reduction in mitochondrial respiration. Our data suggests that mitochondrial stress, protein succination and ER stress are uniquely linked in adipocytes matured in high glucose.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/farmacologia , Mitocôndrias/efeitos dos fármacos , Fenilbutiratos/farmacologia , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio , Dobramento de Proteína , Fator de Transcrição CHOP/análise , Resposta a Proteínas não Dobradas
5.
Biochem J ; 462(2): 231-45, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24909641

RESUMO

Protein succination is a stable post-translational modification that occurs when fumarate reacts with cysteine residues to generate 2SC [S-(2-succino)cysteine]. We demonstrate that both α- and ß-tubulin are increasingly modified by succination in 3T3-L1 adipocytes and in the adipose tissue of db/db mice. Incubation of purified tubulin from porcine brain with fumarate (50 mM) or the pharmacological compound DMF (dimethylfumarate, 500 µM) inhibited polymerization up to 35% and 59% respectively. Using MS we identified Cys347α, Cys376α, Cys12ß and Cys303ß as sites of succination in porcine brain tubulin and the relative abundance of succination at these cysteine residues increased in association with fumarate concentration. The increase in succination after incubation with fumarate altered tubulin recognition by an anti-α-tubulin antibody. Succinated tubulin in adipocytes cultured in high glucose compared with normal glucose also had reduced reactivity with the anti-α-tubulin antibody; suggesting that succination may interfere with tubulin-protein interactions. DMF reacted rapidly with 11 of the 20 cysteine residues in the αß-tubulin dimer, decreased the number of free thiols and inhibited the proliferation of 3T3-L1 fibroblasts. Our data suggest that inhibition of tubulin polymerization is an important undocumented mechanism of action of DMF. Taken together, our results demonstrate that succination is a novel post-translational modification of tubulin and suggest that extensive modification by fumarate, either physiologically or pharmacologically, may alter microtubule dynamics.


Assuntos
Ácido Succínico/metabolismo , Tubulina (Proteína)/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Encéfalo/metabolismo , Bovinos , Proliferação de Células , Meios de Cultura , Diabetes Mellitus Tipo 2/metabolismo , Fumarato de Dimetilo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fumaratos/farmacologia , Glucose/metabolismo , Camundongos , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA