Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Electron J Stat ; 16(1): 1891-1951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37051046

RESUMO

Thanks to their simplicity and interpretable structure, autoregressive processes are widely used to model time series data. However, many real time series data sets exhibit non-linear patterns, requiring nonlinear modeling. The threshold Auto-Regressive (TAR) process provides a family of non-linear auto-regressive time series models in which the process dynamics are specific step functions of a thresholding variable. While estimation and inference for low-dimensional TAR models have been investigated, high-dimensional TAR models have received less attention. In this article, we develop a new framework for estimating high-dimensional TAR models, and propose two different sparsity-inducing penalties. The first penalty corresponds to a natural extension of classical TAR model to high-dimensional settings, where the same threshold is enforced for all model parameters. Our second penalty develops a more flexible TAR model, where different thresholds are allowed for different auto-regressive coefficients. We show that both penalized estimation strategies can be utilized in a three-step procedure that consistently learns both the thresholds and the corresponding auto-regressive coefficients. However, our theoretical and empirical investigations show that the direct extension of the TAR model is not appropriate for high-dimensional settings and is better suited for moderate dimensions. In contrast, the more flexible extension of the TAR model leads to consistent estimation and superior empirical performance in high dimensions.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(8): 4267-4279, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33705309

RESUMO

While most classical approaches to Granger causality detection assume linear dynamics, many interactions in real-world applications, like neuroscience and genomics, are inherently nonlinear. In these cases, using linear models may lead to inconsistent estimation of Granger causal interactions. We propose a class of nonlinear methods by applying structured multilayer perceptrons (MLPs) or recurrent neural networks (RNNs) combined with sparsity-inducing penalties on the weights. By encouraging specific sets of weights to be zero-in particular, through the use of convex group-lasso penalties-we can extract the Granger causal structure. To further contrast with traditional approaches, our framework naturally enables us to efficiently capture long-range dependencies between series either via our RNNs or through an automatic lag selection in the MLP. We show that our neural Granger causality methods outperform state-of-the-art nonlinear Granger causality methods on the DREAM3 challenge data. This data consists of nonlinear gene expression and regulation time courses with only a limited number of time points. The successes we show in this challenging dataset provide a powerful example of how deep learning can be useful in cases that go beyond prediction on large datasets. We likewise illustrate our methods in detecting nonlinear interactions in a human motion capture dataset.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Modelos Lineares
3.
SIAM J Math Data Sci ; 3(1): 83-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37859797

RESUMO

We present a framework for learning Granger causality networks for multivariate categorical time series based on the mixture transition distribution (MTD) model. Traditionally, MTD is plagued by a nonconvex objective, non-identifiability, and presence of local optima. To circumvent these problems, we recast inference in the MTD as a convex problem. The new formulation facilitates the application of MTD to high-dimensional multivariate time series. As a baseline, we also formulate a multi-output logistic autoregressive model (mLTD), which while a straightforward extension of autoregressive Bernoulli generalized linear models, has not been previously applied to the analysis of multivariate categorial time series. We establish identifiability conditions of the MTD model and compare them to those for mLTD. We further devise novel and efficient optimization algorithms for MTD based on our proposed convex formulation, and compare the MTD and mLTD in both simulated and real data experiments. Finally, we establish consistency of the convex MTD in high dimensions. Our approach simultaneously provides a comparison of methods for network inference in categorical time series and opens the door to modern, regularized inference with the MTD model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA