Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Malar J ; 22(1): 14, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635720

RESUMO

BACKGROUND: Entomological surveillance provides critical information on vectors for appropriate malaria vector control and strategic decision-making. The widely documented insecticide resistance of malaria vectors in Côte d'Ivoire requires that any vector control intervention deployment be driven by entomological data to optimize its effectiveness and appropriate resource allocations. To achieve this goal, this study documents the results of monthly vector surveillance and insecticide susceptibility tests conducted in 2019 and a review of all previous entomological monitoring data used to guide vector control decision making. Furthermore, susceptibility to pirimiphos-methyl and clothianidin was assessed in addition to chlorfenapyr and pyrethroids (intensity and piperonyl butoxide (PBO) synergism) tests previously reported. Vector bionomic data were conducted monthly in four sites (Sakassou, Béoumi, Dabakala and Nassian) that were selected based on their reported high malaria incidence. Adult mosquitoes were collected using human landing catches (HLCs), pyrethrum spray catches (PSCs), and human-baited CDC light traps to assess vector density, behaviour, species composition and sporozoite infectivity. RESULTS: Pirimiphos-methyl and clothianidin susceptibility was observed in 8 and 10 sites, respectively, while previous data reported chlorfenapyr (200 µg/bottle) susceptibility in 13 of the sites, high pyrethroid resistance intensity and increased mortality with PBO pre-exposure at all 17 tested sites. Anopheles gambiae sensu lato was the predominant malaria vector collected in all four bionomic sites. Vector density was relatively higher in Sakassou throughout the year with mean biting rates of 278.2 bites per person per night (b/p/n) compared to Béoumi, Dabakala and Nassian (mean of 48.5, 81.4 and 26.6 b/p/n, respectively). The mean entomological inoculation rate (EIR) was 4.44 infective bites per person per night (ib/p/n) in Sakassou, 0.34 ib/p/n in Beoumi, 1.17 ib/p/n in Dabakala and 1.02 ib/p/n in Nassian. The highest EIRs were recorded in October in Béoumi (1.71 ib/p/n) and Nassian (3.22 ib/p/n), in July in Dabakala (4.46 ib/p/n) and in May in Sakassou (15.6 ib/p/n). CONCLUSION: Based on all results and data review, the National Malaria Control Programme developed and implemented a stratified insecticide-treated net (ITN) mass distribution in 2021 considering new generation ITNs. These results also supported the selection of clothianidin-based products and an optimal spraying time for the first indoor residual spraying (IRS) campaign in Sakassou and Nassian in 2020.


Assuntos
Anopheles , Inseticidas , Malária , Humanos , Animais , Inseticidas/farmacologia , Malária/epidemiologia , Controle de Mosquitos/métodos , Côte d'Ivoire/epidemiologia , Mosquitos Vetores , Resistência a Inseticidas
3.
Malar J ; 19(1): 454, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298071

RESUMO

BACKGROUND: Pyrethroid-treated mosquito nets are currently the mainstay of vector control in Côte d'Ivoire. However, resistance to pyrethroids has been reported across the country, limiting options for insecticide resistance management due to the paucity of alternative insecticides. Two types of insecticide-treated nets (ITNs), ITNs with pyrethroids and the synergist piperonyl butoxide (PBO), and Interceptor®G2 nets, a net treated with a combination of chlorfenapyr and alpha-cypermethrin, are believed to help in the control of pyrethroid-resistant mosquitoes. METHODS: The susceptibility of Anopheles gambiae sensu lato (s.l.) to pyrethroid insecticides with and without pre-exposure to PBO as well as to chlorfenapyr was investigated in fifteen sites across the country. Susceptibility tests were conducted on 2- to 4-day old adult female An. gambiae s.l. reared from larval collections. The resistance status, intensity, and effects of PBO on mortality after exposure to different concentrations of deltamethrin, permethrin and alpha-cypermethrin were determined using WHO susceptibility test kits. In the absence of a WHO-recommended standard protocol for chlorfenapyr, two interim doses (100 and 200 µg/bottle) were used to test the susceptibility of mosquitoes using the CDC bottle assay method. RESULTS: Pre-exposure to PBO did not result in full restoration of susceptibility to any of the three pyrethroids for the An. gambiae s.l. populations from any of the sites surveyed. However, PBO pre-exposure did increase mortality for all three pyrethroids, particularly deltamethrin (from 4.4 to 48.9%). Anopheles gambiae s.l. from only one site (Bettie) were susceptible to chlorfenapyr at the dose of 100 µg active ingredient (a.i.)/bottle. At the dose of 200 µg (a.i.)/bottle, susceptibility was only recorded in 10 of the 15 sites. CONCLUSION: Low mosquito mortality was found for pyrethroids alone, and while PBO increased mortality, it did not restore full susceptibility. The vector was not fully susceptible to chlorfenapyr in one third of the sites tested. However, vector susceptibility to chlorfenapyr seems to be considerably higher than for pyrethroids alone or with PBO. These data should be used cautiously when making ITN procurement decisions, noting that bioassays are conducted in controlled conditions and may not fully represent field efficacy where the host-seeking behaviours, which include free-flying activity are known to enhance pro-insecticide chlorfenapyr intoxication to mosquitoes.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Animais , Côte d'Ivoire , Sinergismo Farmacológico , Feminino , Mosquiteiros Tratados com Inseticida , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Sinergistas de Praguicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA