Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(13): 9623-9631, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35699285

RESUMO

We use global airborne observations of propane (C3H8) and ethane (C2H6) from the Atmospheric Tomography (ATom) and HIAPER Pole-to-Pole Observations (HIPPO), as well as U.S.-based aircraft and tower observations by NOAA and from the NCAR FRAPPE campaign as tracers for emissions from oil and gas operations. To simulate global mole fraction fields for these gases, we update the default emissions' configuration of C3H8 used by the global chemical transport model, GEOS-Chem v13.0.0, using a scaled C2H6 spatial proxy. With the updated emissions, simulations of both C3H8 and C2H6 using GEOS-Chem are in reasonable agreement with ATom and HIPPO observations, though the updated emission fields underestimate C3H8 accumulation in the arctic wintertime, pointing to additional sources of this gas in the high latitudes (e.g., Europe). Using a Bayesian hierarchical model, we estimate global emissions of C2H6 and C3H8 from fossil fuel production in 2016-2018 to be 13.3 ± 0.7 (95% CI) and 14.7 ± 0.8 (95% CI) Tg/year, respectively. We calculate bottom-up hydrocarbon emission ratios using basin composition measurements weighted by gas production and find their magnitude is higher than expected and is similar to ratios informed by our revised alkane emissions. This suggests that emissions are dominated by pre-processing activities in oil-producing basins.


Assuntos
Poluentes Atmosféricos , Petróleo , Poluentes Atmosféricos/análise , Teorema de Bayes , Fósseis , Gases , Hidrocarbonetos , Metano/análise , Gás Natural/análise
2.
Proc Natl Acad Sci U S A ; 117(24): 13300-13307, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482875

RESUMO

We report national scale estimates of CO2 emissions from fossil-fuel combustion and cement production in the United States based directly on atmospheric observations, using a dual-tracer inverse modeling framework and CO2 and [Formula: see text] measurements obtained primarily from the North American portion of the National Oceanic and Atmospheric Administration's Global Greenhouse Gas Reference Network. The derived US national total for 2010 is 1,653 ± 30 TgC yr-1 with an uncertainty ([Formula: see text]) that takes into account random errors associated with atmospheric transport, atmospheric measurements, and specified prior CO2 and 14C fluxes. The atmosphere-derived estimate is significantly larger ([Formula: see text]) than US national emissions for 2010 from three global inventories widely used for CO2 accounting, even after adjustments for emissions that might be sensed by the atmospheric network, but which are not included in inventory totals. It is also larger ([Formula: see text]) than a similarly adjusted total from the US Environmental Protection Agency (EPA), but overlaps EPA's reported upper 95% confidence limit. In contrast, the atmosphere-derived estimate is within [Formula: see text] of the adjusted 2010 annual total and nine of 12 adjusted monthly totals aggregated from the latest version of the high-resolution, US-specific "Vulcan" emission data product. Derived emissions appear to be robust to a range of assumed prior emissions and other parameters of the inversion framework. While we cannot rule out a possible bias from assumed prior Net Ecosystem Exchange over North America, we show that this can be overcome with additional [Formula: see text] measurements. These results indicate the strong potential for quantification of US emissions and their multiyear trends from atmospheric observations.

3.
Sci Adv ; 5(6): eaaw0076, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31183402

RESUMO

Long-term atmospheric CO2 mole fraction and δ13CO2 observations over North America document persistent responses to the El Niño-Southern Oscillation. We estimate these responses corresponded to 0.61 (0.45 to 0.79) PgC year-1 more North American carbon uptake during El Niño than during La Niña between 2007 and 2015, partially offsetting increases of net tropical biosphere-to-atmosphere carbon flux around El Niño. Anomalies in derived North American net ecosystem exchange (NEE) display strong but opposite correlations with surface air temperature between seasons, while their correlation with water availability was more constant throughout the year, such that water availability is the dominant control on annual NEE variability over North America. These results suggest that increased water availability and favorable temperature conditions (warmer spring and cooler summer) caused enhanced carbon uptake over North America near and during El Niño.

4.
Nat Geosci ; 11(9): 744-748, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30319710

RESUMO

Severe droughts in the Northern Hemisphere cause widespread decline of agricultural yield, reduction of forest carbon uptake, and increased CO2 growth rates in the atmosphere. Plants respond to droughts by partially closing their stomata to limit their evaporative water loss, at the expense of carbon uptake by photosynthesis. This trade-off maximizes their water-use efficiency, as measured for many individual plants under laboratory conditions and field experiments. Here we analyze the 13C/12C stable isotope ratio in atmospheric CO2 (reported as δ13C) to provide new observational evidence of the impact of droughts on the water-use efficiency across areas of millions of km2 and spanning one decade of recent climate variability. We find strong and spatially coherent increases in water-use efficiency along with widespread reductions of net carbon uptake over the Northern Hemisphere during severe droughts that affected Europe, Russia, and the United States in 2001-2011. The impact of those droughts on water-use efficiency and carbon uptake by vegetation is substantially larger than simulated by the land-surface schemes of six state-of-the-art climate models. This suggests that drought induced carbon-climate feedbacks may be too small in these models and improvements to their vegetation dynamics using stable isotope observations can help to improve their drought response.

5.
Sci Total Environ ; 633: 1022-1031, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758855

RESUMO

During a cruise of the survey vessel Dongfanghong II on the Yellow Sea and the East China Sea in the spring of 2017 we performed accurate measurements of the mole fractions of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO) and nitrous oxide (N2O) using two types of Cavity Ring-Down Spectrometers (CRDS). The spatial variations of the mole fraction of the four trace gases were very similar. The emission sources of these gases were divided into several regions by using the NOAA HYSPLIT model. Then we analyzed the variations of the ratios of the mole fraction enhancements between every pair of trace gases downwind of these source areas. The ratios showed that the distributions of these trace gases over the Yellow Sea and the East China Sea in the spring were mainly caused by the emissions from Eastern China. The much higher enhancement ratio of ΔCO/ΔCO2 and the lower ratio of ΔCH4/ΔCO observed in the air parcels from big cities like Beijing and Shanghai indicated high CO emission from the cities during our time of observation. Compared with the values of NOAA's Marine Boundary Layer (MBL), the ratios of the averages in the air coming from the Northern sector (Russia) were on average closer to the MBL, and the air that stayed over the Yellow Sea and the East China Sea was a mixture of emissions from wide regional areas. The highly variable N2O data of the air from Qingdao and Shanghai showed much more fluctuation.

6.
Environ Sci Technol ; 51(12): 7286-7294, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28548824

RESUMO

Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. Our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R2 = 0.75) and active gas well pad count (R2 = 0.81), and (iii) 2× higher emissions in the western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ∼1/3 of the total emissions detected midday by the aircraft and ∼2/3 of the west-east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. While the aircraft approach is valid, quantitative, and independent, our study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Aeronaves , Gás Natural , Projetos de Pesquisa
8.
Nature ; 538(7623): 88-91, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708291

RESUMO

Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.


Assuntos
Atmosfera/química , Bases de Dados Factuais , Combustíveis Fósseis , Metano/análise , Isótopos de Carbono/análise , Carvão Mineral , Método de Monte Carlo , Gás Natural , Petróleo
9.
Anal Chem ; 88(6): 3376-85, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26890890

RESUMO

The National Institute of Standards and Technology (NIST) recently began to develop standard mixtures of greenhouse gases as part of a broad program mandated by the 2009 United States Congress to support research in climate change. To this end, NIST developed suites of gravimetrically assigned primary standard mixtures (PSMs) comprising carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in a dry-natural air balance at ambient mole fraction levels. In parallel, the National Oceanic and Atmospheric Administration (NOAA) in Boulder, Colorado, charged 30 aluminum gas cylinders with northern hemisphere air at Niwot Ridge, Colorado. These mixtures, which constitute NIST Standard Reference Material (SRM) 1720 Northern Continental Air, were certified by NIST for ambient mole fractions of CO2, CH4, and N2O relative to NIST PSMs. NOAA-assigned values are also provided as information in support of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Program for CO2, CH4, and N2O, since NOAA serves as the WMO Central Calibration Laboratory (CCL) for CO2, CH4, and N2O. Relative expanded uncertainties at the 95% confidence interval are <±0.06% of the certified values for CO2 and N2O and <0.2% for CH4, which represents the smallest relative uncertainties specified to date for a gaseous SRM produced by NIST. Agreement between the NOAA (WMO/GAW) and NIST values based on their respective calibration standards suites is within 0.05%, 0.13%, and 0.06% for CO2, CH4, and N2O, respectively. This collaborative development effort also represents the first of its kind for a gaseous SRM developed by NIST.

10.
Proc Natl Acad Sci U S A ; 107(43): 18348-53, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937899

RESUMO

Studies diverge substantially on the actual magnitude of the North American carbon budget. This is due to the lack of appropriate data and also stems from the difficulty to properly model all the details of the flux distribution and transport inside the region of interest. To sidestep these difficulties, we use here a simple budgeting approach to estimate land-atmosphere fluxes across North America by balancing the inflow and outflow of CO(2) from the troposphere. We base our study on the unique sampling strategy of atmospheric CO(2) vertical profiles over North America from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory aircraft network, from which we infer the three-dimensional CO(2) distribution over the continent. We find a moderate sink of 0.5 ± 0.4 PgC y(-1) for the period 2004-2006 for the coterminous United States, in good agreement with the forest-inventory-based estimate of the first North American State of the Carbon Cycle Report, and averaged climate conditions. We find that the highest uptake occurs in the Midwest and in the Southeast. This partitioning agrees with independent estimates of crop uptake in the Midwest, which proves to be a significant part of the US atmospheric sink, and of secondary forest regrowth in the Southeast. Provided that vertical profile measurements are continued, our study offers an independent means to link regional carbon uptake to climate drivers.

11.
Proc Natl Acad Sci U S A ; 104(48): 18925-30, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18045791

RESUMO

We present an estimate of net CO(2) exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO(2) mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO(2) called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO(2) in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed -0.65 PgC/yr (1 petagram = 10(15) g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of -0.4 to -1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to -0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov.


Assuntos
Atmosfera/análise , Dióxido de Carbono/análise , Monitoramento Ambiental/instrumentação , Agricultura , Ar/análise , Biomassa , Produtos Agrícolas/metabolismo , Desastres , Incêndios , Combustíveis Fósseis , Efeito Estufa , Atividades Humanas , América do Norte , Poaceae/metabolismo , Árvores/metabolismo
12.
Science ; 316(5832): 1732-5, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17588927

RESUMO

Measurements of midday vertical atmospheric CO2 distributions reveal annual-mean vertical CO2 gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial carbon from tropical to northern latitudes. The three models that most closely reproduce the observed annual-mean vertical CO2 gradients estimate weaker northern uptake of -1.5 petagrams of carbon per year (Pg C year(-1)) and weaker tropical emission of +0.1 Pg C year(-1) compared with previous consensus estimates of -2.4 and +1.8 Pg C year(-1), respectively. This suggests that northern terrestrial uptake of industrial CO2 emissions plays a smaller role than previously thought and that, after subtracting land-use emissions, tropical ecosystems may currently be strong sinks for CO2.

13.
J Chromatogr A ; 1134(1-2): 1-15, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-17010353

RESUMO

Nine commercial solid adsorbent materials (in order of decreasing surface area: Carboxen 1000, Carbosieve S III, molecular sieve 5A, molecular sieve 4A, silica gel, Carboxen 563, activated alumina, Carbotrap and Carboxen 1016) were investigated for their ability to trap and release C2-C6 non-methane hydrocarbons (NMHCs) in atmospheric samples for subsequent thermal desorption gas chromatography-flame ionization detection analysis (GC-FID). Recovery rates for 23 NMHCs and methyl chloride (CH3Cl) were determined. A microtrap filled with the three adsorbents Carbosieve S III, Carboxen 563 and Carboxen 1016 was found to allow for the analysis of the widest range of target analytes. A detection limit of approximately 3pptC [parts per trillion (carbon)] in a 1l air sample and a linear response over a wide range of volatilities and sample volumes was determined for this configuration. Water vapor in the sample air was found to causes interference in trapping and subsequent chromatographic analysis of light NMHCs. A Peltier-cooled, regenerable water trap inserted into the sample flow path was found to mitigate these problems and to allow quantitative and reproducible results for all analytes at all tested humidity conditions.


Assuntos
Atmosfera/química , Cromatografia Gasosa/instrumentação , Cromatografia Gasosa/métodos , Hidrocarbonetos/análise , Hidrocarbonetos/química , Adsorção , Óxido de Alumínio/análise , Óxido de Alumínio/química , Etano/análise , Etano/química , Hexanos/análise , Hexanos/química , Metano , Sílica Gel , Dióxido de Silício/análise , Dióxido de Silício/química , Temperatura
14.
Appl Opt ; 45(17): 4136-41, 2006 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-16761056

RESUMO

An infrared absorption spectrometer has been constructed to measure the stable isotopic composition of atmospheric methane samples. The spectrometer employs periodically poled lithium niobate to generate 15 microW of tunable difference-frequency radiation from two near-infrared diode lasers that probe the nu3 rotational-vibrational band of methane at 3.4 microm. To enhance the signal, methane is extracted from 25 l of air by use of a cryogenic chromatographic column and is expanded into the multipass cell for analysis. A measurement precision of 12 per thousand is demonstrated for both delta13C and deltaD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA