Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736283

RESUMO

The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.

2.
J Am Chem Soc ; 146(10): 7039-7051, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38418944

RESUMO

A special type of C-H functionalization can be achieved through C-H insertion combined with Cope rearrangement (CHCR) in the presence of dirhodium catalysts. This type of reaction was studied using density functional theory and ab initio molecular dynamics simulations, the results of which pointed to the dynamic origins of low yields observed in some experiments. These studies not only reveal intimate details of the complex reaction network underpinning CHCR reactions but also further cement the generality of the importance of nonstatistical dynamic effects in controlling Rh2L4-promoted reactions.

3.
Chempluschem ; : e202300756, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412020

RESUMO

Investigating the reactivity of small nucleophilic scaffolds is a strategic approach for the design of new catalysts aiming at effective detoxification processes of organophosphorus compounds. The drug methimazole (MMZ) is an interesting candidate featuring two non-equivalent nucleophilic centers. Herein, phosphoryl transfer reactions mediated by MMZ were assessed by means of spectrophotometric kinetic studies, mass spectrometry (MS) analyses, and density functional theory (DFT) calculations using the multi-electrophilic compound O,O-diethyl 2,4-dinitrophenyl phosphate (DEDNPP). MMZ anion acts primarily as an S-nucleophile, exhibiting a nucleophilic activity comparable to that of certain oximes featuring alpha-effect. Selective nucleophilic aromatic substitution was observed, consistent with the DFT prediction of a low energy barrier. Overall, the results bring important advances regarding the mechanistic understanding of nucleophilic dephosphorylation reactions, which comprises a strategic tool for neutralizing toxic organophosphates, hence promoting chemical security.

4.
Angew Chem Int Ed Engl ; 63(19): e202319930, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38237059

RESUMO

The first assortment of achiral pentafluorosulfanylated cyclobutanes (SF5-CBs) are now synthetically accessible through strain-release functionalization of [1.1.0]bicyclobutanes (BCBs) using SF5Cl. Methods for both chloropentafluorosulfanylation and hydropentafluorosulfanylation of sulfone-based BCBs are detailed herein, as well as proof-of-concept that the logic extends to tetrafluoro(aryl)sulfanylation, tetrafluoro(trifluoromethyl)sulfanylation, and three-component pentafluorosulfanylation reactions. The methods presented enable isolation of both syn and anti isomers of SF5-CBs, but we also demonstrate that this innate selectivity can be overridden in chloropentafluorosulfanylation; that is, an anti-stereoselective variant of SF5Cl addition across sulfone-based BCBs can be achieved by using inexpensive copper salt additives. Considering the SF5 group and CBs have been employed individually as nonclassical bioisosteres, structural aspects of these unique SF5-CB "hybrid isosteres" were then contextualized using SC-XRD. From a mechanistic standpoint, chloropentafluorosulfanylation ostensibly proceeds through a curious polarity mismatch addition of electrophilic SF5 radicals to the electrophilic sites of the BCBs. Upon examining carbonyl-containing BCBs, we also observed rare instances whereby radical addition to the 1-position of a BCB occurs. The nature of the key C(sp3)-SF5 bond formation step - among other mechanistic features of the methods we disclose - was investigated experimentally and with DFT calculations. Lastly, we demonstrate compatibility of SF5-CBs with various downstream functionalizations.

5.
Nat Chem ; 16(4): 615-623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216753

RESUMO

Revealing the origins of kinetic selectivity is one of the premier tasks of applied theoretical organic chemistry, and for many reactions, doing so involves comparing competing transition states. For some reactions, however, a single transition state leads directly to multiple products, in which case non-statistical dynamic effects influence selectivity control. The selectivity of photochemical reactions-where crossing between excited-state and ground-state surfaces occurs near ground-state transition structures that interconvert competing products-also should be controlled by the momentum of the reacting molecules as they return to the ground state in addition to the shape of the potential energy surfaces involved. Now, using machine-learning-assisted non-adiabatic molecular dynamics and multiconfiguration pair-density functional theory, these factors are examined for a classic photochemical reaction-the deazetization of 2,3-diazabicyclo[2.2.2]oct-2-ene-for which we demonstrate that momentum dominates the selectivity for hexadiene versus [2.2.2] bicyclohexane products.

6.
Nature ; 625(7994): 287-292, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200298

RESUMO

Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner-Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner-Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.

7.
New Phytol ; 241(2): 764-778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37904576

RESUMO

Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic ß-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis ß-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.


Assuntos
Chenopodium quinoa , Transferases Intramoleculares , Triterpenos , Chenopodium quinoa/metabolismo , Triterpenos/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo
8.
Angew Chem Int Ed Engl ; 63(4): e202317348, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38032339

RESUMO

Herein, we describe our synthetic efforts toward the pupukeanane natural products, in which we have completed the first enantiospecific route to 2-isocyanoallopupukeanane in 10 steps (formal synthesis), enabled by a key Pd-mediated cyclization cascade. This subsequently facilitated an unprecedented bio-inspired "contra-biosynthetic" rearrangement, providing divergent access to 9-isocyanopupukeanane in 15 steps (formal synthesis). Computational studies provide insight into the nature of this rearrangement.

10.
JACS Au ; 3(10): 2883-2893, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885570

RESUMO

Monoterpene alkaloids encompass distinct chemical diversity and wide-ranging bioactivity. Their compact complexity has made them popular as synthetic targets and has inspired many distinct strategies and tactics in the field of heterocyclic chemistry. This article documents the evolution of a synthetic program aimed at accessing the unusual sulfonamide-containing natural product altemicidin, which was generally believed to be a monoterpene alkaloid throughout our entire synthetic investigations but has recently been found to originate through an unexpected and quite disparate biosynthetic pathway. By leveraging a pyridine dearomatization/cycloaddition strategy, we developed a concise pathway to the 5,6-fused bicyclic azaindane core and, after significant experimentation, an ultimate synthesis of altemicidin itself. Tactics to productively manipulate the multiple functional groups present on this highly polar scaffold proved challenging but were eventually realized via several carefully orchestrated and chemoselective transformations-investments that paid dividends in the form of significantly shorter chemical synthesis. Surprisingly, the bond-forming logic between our presumed abiotic synthetic strategy to this alkaloid class and its subsequently identified biosynthetic pathway is eerily similar.

12.
Angew Chem Int Ed Engl ; 62(49): e202315108, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37860947

RESUMO

Nitrogen heterocycles play a vital role in pharmaceuticals and natural products, with the six-membered aromatic and aliphatic architectures being commonly used. While synthetic methods for aromatic N-heterocycles are well-established, the synthesis of their aliphatic functionalized analogues, particularly piperidine derivatives, poses a significant challenge. In that regard, we propose a stepwise dearomative functionalization reaction for the construction of highly decorated piperidine derivatives with diverse functional handles. We also discuss challenges related to site-selectivity, regio- and diastereoselectivity, and provide insights into the reaction mechanism through mechanistic studies and density functional theory computations.

13.
Org Lett ; 25(39): 7137-7141, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37750489

RESUMO

Silyloxypyrone-based (5+2) cycloadditions were facilitated by amides that allowed for increased reactivity and a pathway for cleaving the tether to afford net intermolecular cycloadducts. Various amides underwent facile cycloaddition, and several experiments revealed steric and electronic factors that accelerate the reaction. tert-Butyl amides reacted faster than less hindered variants in multiple cases. In the case of dearomative oxidopyrylium-indole (5+2) cycloadditions, an amine-based tether was ineffective, whereas amides enabled this powerful transformation. Theoretical calculations evidenced a concerted asynchronous reaction in which the amide facilitates a conformational driving force enabling cycloaddition. Finally, a one-pot acylation/(5+2) cycloaddition/nucleophilic lactam opening and other examples of tosyl lactam opening of a modified cycloadduct were demonstrated.

14.
Angew Chem Int Ed Engl ; 62(45): e202312490, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37735947

RESUMO

Terpene cyclization, one of the most complex chemical reactions in nature, is generally catalyzed by two classes of terpene cyclases (TCs). Cytochrome P450s that act as unexpected TC-like enzymes are known but are very rare. In this study, we genome-mined a cryptic bacterial terpenoid gene cluster, named ari, from the thermophilic actinomycete strain Amycolatopsis arida. By employing a heterologous production system, we isolated and characterized three highly oxidized eunicellane derived diterpenoids, aridacins A-C (1-3), that possess a 6/7/5-fused tricyclic scaffold. In vivo and in vitro experiments systematically established a noncanonical two-step biosynthetic pathway for diterpene skeleton formation. First, a class I TC (AriE) cyclizes geranylgeranyl diphosphate (GGPP) into a 6/10-fused bicyclic cis-eunicellane skeleton. Next, a cytochrome P450 (AriF) catalyzes cyclization of the eunicellane skeleton into the 6/7/5-fused tricyclic scaffold through C2-C6 bond formation. Based on the results of quantum chemical computations, hydrogen abstraction followed by electron transfer coupled to barrierless carbocation ring closure is shown to be a viable mechanism for AriF-mediated cyclization. The biosynthetic logic of skeleton construction in the aridacins is unprecedented, expanding the catalytic capacity and diversity of P450s and setting the stage to investigate the inherent principles of carbocation generation by P450s in the biosynthesis of terpenoids.


Assuntos
Diterpenos , Terpenos , Ciclização , Terpenos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/química , Bactérias/metabolismo
15.
Chemistry ; 29(55): e202301551, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37403766

RESUMO

A site-selective C(3)/C(4)-alkylation of N-pyridylisoquinolones is achieved by employing C-C bond activation of cyclopropanols under Ru(II)-catalyzed/Cu(II)-mediated conditions. The regioisomeric ratios of the products follow directly from the electronic nature of the cyclopropanols and isoquinolones used, with electron-withdrawing groups yielding predominantly the C(3)-alkylated products, whereas the electron-donating groups primarily generate the C(4)-alkylated isomers. Density functional theory calculations and detailed mechanistic investigations suggest the simultaneous existence of the singlet and triplet pathways for the C(3)- and C(4)-product formation. Further transformations of the products evolve the utility of the methodology thereby yielding scaffolds of synthetic relevance.

16.
Angew Chem Int Ed Engl ; 62(38): e202309136, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37495925

RESUMO

Stereoselective Zweifel olefination using boronate complexes carrying two different reactive π-systems was achieved to synthesize vinyl heteroarenes and conjugated 1,3-dienes in good yield and up to 100 % stereoselectivity, which remains unexplored until now. Most importantly, we report the unprecedented formation of E vs. Z-vinyl heteroarenes for different heteroarenes under identical conditions. Density functional theory (DFT) investigations unveil the mechanistic dichotomy between olefin and heteroarene activation followed by 1,2-migration, leading to E or Z-vinyl heteroarenes respectively. We also report a previously unknown reversal of stereoselectivity by using 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electrophile. The Zweifel olefination using a boronate complex that carries two different olefins was previously unexplored due to significant challenges associated with the site-selective activation of olefins. We have solved this problem and reported the site-selective activation of olefins for the stereoselective synthesis of 1,3-dienes.

17.
J Am Chem Soc ; 145(31): 17389-17397, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494703

RESUMO

Herein, we disclose an approach to synthesize tert-alkyl cyclopropanes by leveraging C-F bond functionalization of gem-difluorocyclopropenes using tris(pentafluorophenyl)borane catalysis. The reaction proceeds through the intermediacy of a fluorocyclopropenium ion, which was confirmed by the isolation of [Ph2(C6D5)C3]+[(C6F5)3BF]-. We found that silylketene acetal nucleophiles were optimal reaction partners with fluorocyclopropenium ion intermediates yielding fully substituted cyclopropenes functionalized with two α-tert-alkyl centers (63-93% yield). The regioselectivity of the addition to cyclopropenium ions is controlled by their steric and electronic properties and enables access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The resulting cyclopropene products are readily reduced to the corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the C-F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si-F bond formation is the enthalpic driving force for the reaction.

18.
J Am Chem Soc ; 145(24): 13452-13461, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279177

RESUMO

Polycyclic ring systems are ubiquitous three-dimensional (3D) structural motifs central to the function of many biologically active small molecules and organic materials. Indeed, subtle changes to the overall molecular shape and connectivity of atoms in a polycyclic framework (i.e., isomerism) can drastically alter its function and properties. Unfortunately, direct evaluation of these structure-function relationships typically requires the development of distinct synthetic strategies toward a specific isomer. Dynamic, "shapeshifting" carbon cages present a promising approach for sampling isomeric chemical space but are often difficult to control and are largely limited to thermodynamic mixtures of positional isomers about a single core scaffold. Here, we describe the development of a new shapeshifting C9-chemotype and a chemical blueprint for its evolution into structurally and energetically diverse isomeric ring systems. By leveraging the unique molecular topology of π-orbitals interacting through-space (homoconjugation), a common skeletal ancestor evolved into a complex network of valence isomers. This unusual system represents an exceedingly rare small molecule capable of undergoing controllable and continuous isomerization processes through the iterative use of just two chemical steps (light and organic base). Computational and photophysical studies of the isomer network provide fundamental insight into the reactivity, mechanism, and role of homoconjugative interactions. Importantly, these insights may inform the rational design and synthesis of new dynamic, shapeshifting systems. We anticipate this process could be a powerful tool for the synthesis of structurally diverse, isomeric polycycles central to many bioactive small molecules and functional organic materials.

19.
J Org Chem ; 88(13): 9056-9065, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37335974

RESUMO

We describe the various escape channels available to dirhodium carbene intermediates from cycloheptatrienyl diazo compounds located with density functional theory. An intramolecular cyclopropanation would, in principle, provide a new route to semibullvalenes (SBVs). A detailed exploration of the potential energy surface reveals that methylating carbon-7 suppresses a competing ß-hydride migration pathway to heptafulvene products, giving SBV formation a reasonable chance. During our explorations, we additionally discovered unusual spirononatriene, spironorcaradiene, and metal-stabilized 9-barbaralyl cation structures as local minima.


Assuntos
Ródio , Ródio/química , Catálise , Compostos Azo/química , Carbono
20.
Chem Sci ; 14(23): 6443-6448, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325151

RESUMO

Substrates engineered to undergo a 1,4-C-H insertion to yield benzocyclobutenes resulted in a novel elimination reaction to yield ortho-quinone dimethide (o-QDM) intermediates that undergo Diels-Alder or hetero-Diels-Alder cycloadditions. The analogous benzylic acetals or ethers avoid the C-H insertion pathway completely and, after hydride transfer, undergo a de-aromatizing elimination reaction to o-QDM at ambient temperature. The resulting dienes undergo a variety of cycloaddition reactions with high diastereo- and regio-selectivity. This is one of the few examples of catalytic generation of o-QDM without the intermediacy of a benzocyclobutene and represents one of the mildest, ambient temperature processes to access these useful intermediates. This proposed mechanism is supported by DFT calculations. Moreover, the methodology was applied to the synthesis of (±)-isolariciresinol in 41% overall yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA