Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566110

RESUMO

BACKGROUND: Reduced clearance of cerebrospinal fluid (CSF) has been suggested as a pathological feature of Alzheimer's disease (AD). With extensive documentation in non-human mammals and contradictory human neuroimaging data it remains unknown whether the nasal mucosa is a CSF drainage site in humans. Here, we used dynamic PET with [1-11C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid. METHODS: 24 cognitively normal subjects (≥ 65 years) were dynamically PET imaged for 60 min. using [1-11C]-Butanol. Imaging with either [11C]-PiB or [18F]-FBB identified 8 amyloid PET positive (Aß+) and 16 Aß- subjects. MRI-determined regions of interest (ROI) included: the carotid artery, the lateral orbitofrontal (LOF) brain, the cribriform plate, and an All-turbinate region comprised of the superior, middle, and inferior turbinates. The bilateral temporalis muscle and jugular veins served as control regions. Regional time-activity were used to model tracer influx, egress, and AUC. RESULTS: LOF and All-turbinate 60 min AUC were positively associated, thus suggesting a connection between the brain and the nose. Further, the Aß+ subgroup demonstrated impaired tracer kinetics, marked by reduced tracer influx and slower egress. CONCLUSION: The data show that tracer kinetics for brain and nasal turbinates are related to each other and both reflect the amyloid status of the brain. As such, these data add to evidence that the nasal pathway is a potential CSF drainage site in humans. These data warrant further investigation of brain and nasal contributions to protein clearance in neurodegenerative disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Conchas Nasais/metabolismo , Conchas Nasais/patologia , Butanóis/metabolismo , Doenças Neurodegenerativas/metabolismo , Tiazóis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/metabolismo , Envelhecimento , Encéfalo/metabolismo , 1-Butanol/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mamíferos/metabolismo
2.
J Alzheimers Dis ; 99(1): 307-319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669537

RESUMO

Background: Alzheimer's disease (AD) pathology is considered to begin in the brainstem, and cerebral microglia are known to play a critical role in AD pathogenesis, yet little is known about brainstem microglia in AD. Translocator protein (TSPO) PET, sensitive to activated microglia, shows high signal in dorsal brainstem in humans, but the precise location and clinical correlates of this signal are unknown. Objective: To define age and AD associations of brainstem TSPO PET signal in humans. Methods: We applied new probabilistic maps of brainstem nuclei to quantify PET-measured TSPO expression over the whole brain including brainstem in 71 subjects (43 controls scanned using 11C-PK11195; 20 controls and 8 AD subjects scanned using 11C-PBR28). We focused on inferior colliculi (IC) because of visually-obvious high signal in this region, and potential relevance to auditory dysfunction in AD. We also assessed bilateral cortex. Results: TSPO expression was normally high in IC and other brainstem regions. IC TSPO was decreased with aging (p = 0.001) and in AD subjects versus controls (p = 0.004). In cortex, TSPO expression was increased with aging (p = 0.030) and AD (p = 0.033). Conclusions: Decreased IC TSPO expression with aging and AD-an opposite pattern than in cortex-highlights underappreciated regional heterogeneity in microglia phenotype, and implicates IC in a biological explanation for strong links between hearing loss and AD. Unlike in cerebrum, where TSPO expression is considered pathological, activated microglia in IC and other brainstem nuclei may play a beneficial, homeostatic role. Additional study of brainstem microglia in aging and AD is needed.


Assuntos
Envelhecimento , Doença de Alzheimer , Tronco Encefálico , Microglia , Tomografia por Emissão de Pósitrons , Receptores de GABA , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Microglia/patologia , Masculino , Idoso , Feminino , Envelhecimento/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Receptores de GABA/metabolismo , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Isoquinolinas , Adulto
3.
J Alzheimers Dis Rep ; 8(1): 355-361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405348

RESUMO

Diffusion tensor imaging along perivascular spaces (DTI-ALPS) is a novel MRI method for assessing brain interstitial fluid dynamics, potentially indexing glymphatic function. Failed glymphatic clearance is implicated in Alzheimer's disease (AD) pathophysiology. We assessed the contribution of age and female sex (strong AD risk factors) to DTI-ALPS index in healthy subjects. We also for the first time assessed the effect of head size. In accord with prior studies, we show reduced DTI-ALPS index with aging, and in men compared to women. However, head size may be a major contributing factor to this counterintuitive sex difference.

4.
Alzheimers Dement ; 20(3): 2047-2057, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184796

RESUMO

INTRODUCTION: Mapping of microscopic changes in the perivascular space (PVS) of the cerebral cortex, beyond magnetic resonance-visible PVS in white matter, may enhance our ability to diagnose Alzheimer's disease (AD) early. METHODS: We used the cerebrospinal fluid (CSF) water fraction (CSFF), a magnetic resonance imaging-based biomarker, to characterize brain parenchymal CSF water, reflecting microscopic PVS in parenchyma. We measured CSFF and amyloid beta (Aß) using 11 C Pittsburgh compound B positron emission tomography to investigate their relationship at both the subject and voxel levels. RESULTS: Our research has demonstrated a positive correlation between the parenchymal CSFF, a non-invasive imaging biomarker indicative of parenchymal glymphatic clearance, and Aß deposition, observed at both individual and voxel-based assessments in the posterior cingulate cortex. DISCUSSION: This study shows that an increased parenchymal CSFF is associated with Aß deposition, suggesting that CSFF could serve as a biomarker for brain glymphatic clearance, which can be used to detect early fluid changes in PVS predisposing individuals to the development of AD. HIGHLIGHTS: Cerebrospinal fluid fraction (CSFF) could be a biomarker of parenchymal perivascular space. CSFF is positively associated with amyloid beta (Aß) deposition at subject level. CSFF in an Aß+ region is higher than in an Aß- region in the posterior cingulate cortex. Correspondence is found between Aß deposition and glymphatic clearance deficits measured by CSFF.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores , Água
5.
J Neuroradiol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37907155

RESUMO

PURPOSE: The present study investigates a multimodal imaging assessment of glymphatic function and its association with brain amyloid-beta deposition. METHODS: Two brain CSF clearance measures (vCSF and DTI-ALPS) were derived from dynamic PET and MR diffusion tensor imaging (DTI) for 50 subjects, 24/50 were Aß positive (Aß+). T1W, T2W, DTI, T2FLAIR, and 11C-PiB and 18F-MK-6240 PET were acquired. Multivariate linear regression models were assessed with both vCSF and DTI-ALPS as independent variables and brain Aß as the dependent variable. Three types of models were evaluated, including the vCSF-only model, the ALPS-only model and the vCSF+ALPS combined model. Models were applied to the whole group, and Aß subgroups. All analyses were controlled for age, gender, and intracranial volume. RESULTS: Sample demographics (N=50) include 20 males and 30 females with a mean age of 69.30 (sd=8.55). Our results show that the combination of vCSF and ALPS associates with Aß deposition (p < 0.05, R2 = 0.575) better than either vCSF (p < 0.05, R2 = 0.431) or ALPS (p < 0.05, R2 = 0.372) alone in the Aß+ group. We observed similar results in whole-group analyses (combined model: p < 0.05, R2 = 0.287; vCSF model: p <0.05, R2 = 0.175; ALPS model: p < 0.05, R2 = 0.196) with less significance. Our data also showed that vCSF has higher correlation (r = -0.548) in subjects with mild Aß deposition and DTI-ALPS has higher correlation (r=-0.451) with severe Aß deposition subjects. CONCLUSION: The regression model with both vCSF and DTI-ALPS is better associated with brain Aß deposition. These two independent brain clearance measures may better explain the variation in Aß deposition than either term individually. Our results suggest that vCSF and DTI-ALPS reflect complementary aspects of brain clearance functions.

6.
J Hypertens ; 41(1): 35-43, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36204999

RESUMO

BACKGROUND: There is a well documented relationship between cardiovascular risk factors and the development of brain injury, which can lead to cognitive dysfunction. Hypertension (HTN) is a condition increasing the risk of silent and symptomatic ischemic brain lesions. Although benefits of hypertension treatment are indisputable, the target blood pressure value where the possibility of tissue damage is most reduced remains under debate. METHOD: Our group performed a cross-sectional ( n  = 376) and longitudinal ( n  = 188) study of individuals without dementia or stroke (60% women n  = 228, age 68.5 ±â€Š7.4 years; men n  = 148, age 70.7 ±â€Š6.9 years). Participants were split into hypertensive ( n  = 169) and normotensive ( n  = 207) groups. MR images were obtained on a 3T system. Linear modeling was performed in hypertensive and normotensive cohorts to investigate the relationship between systolic (SBP) and diastolic (DBP) blood pressure, white matter lesion (WML), and brain volumes. RESULTS: Participants in the hypertensive cohort showed a quadratic relationship between SBP and WML, with the lowest amounts of WML being measured in participants with readings at approximately 124 mmHg. Additionally, the hypertensive cohort also exhibited a quadratic relationship between DBP and mean hippocampal volume; participants with readings at approximately 77 mmHg showing the largest volumes. Longitudinally, all groups experienced WML growth, despite different BP trajectories, further suggesting that WML expansion may occur despite or because of BP reduction in individuals with compromised vascular system. CONCLUSION: Overall, our study suggests that in the hypertensive group there is a valley of mid-range blood pressures displaying less pathology in the brain.


Assuntos
Hipertensão , Substância Branca , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Pressão Sanguínea/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Transversais , Imageamento por Ressonância Magnética
7.
Front Aging Neurosci ; 14: 948470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158536

RESUMO

Background and objectives: Obesity is a risk factor for cognitive decline. Probable mechanisms involve inflammation and cerebrovascular dysfunction, leading to diminished cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). The hippocampus, crucially involved in memory processing and thus relevant to many types of dementia, poses a challenge in studies of perfusion and CVR, due to its location, small size, and complex shape. We examined the relationships between body mass index (BMI) and hippocampal resting CBF and CVR to carbon dioxide (CVRCO2) in a group of cognitively normal middle-aged and older adults. Methods: Our study was a retrospective analysis of prospectively collected data. Subjects were enrolled for studies assessing the role of hippocampal hemodynamics as a biomarker for AD among cognitively healthy elderly individuals (age > 50). Participants without cognitive impairment, stroke, and active substance abuse were recruited between January 2008 and November 2017 at the NYU Grossman School of Medicine, former Center for Brain Health. All subjects underwent medical, psychiatric, and neurological assessments, blood tests, and MRI examinations. To estimate CVR, we increased their carbon dioxide levels using a rebreathing protocol. Relationships between BMI and brain measures were tested using linear regression. Results: Our group (n = 331) consisted of 60.4% women (age 68.8 ± 7.5 years; education 16.8 ± 2.2 years) and 39.6% men (age 70.4 ± 6.4 years; education 16.9 ± 2.4 years). Approximately 22% of them (n = 73) were obese. BMI was inversely associated with CVRCO2 (ß = -0.12, unstandardized B = -0.06, 95% CI -0.11, -0.004). A similar relationship was observed after excluding subjects with diabetes and insulin resistance (ß = -0.15, unstandardized B = -0.08, 95% CI -0.16, -0.000). In the entire group, BMI was more strongly related to hippocampal CVRCO2 in women (ß = -0.20, unstandardized B = -0.08, 95% CI -0.13, -0.02). Discussion: These findings lend support to the notion that obesity is a risk factor for hippocampal hemodynamic impairment and suggest targeting obesity as an important prevention strategy. Prospective studies assessing the effects of weight loss on brain hemodynamic measures and inflammation are warranted.

8.
Sci Rep ; 12(1): 13351, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922659

RESUMO

In rodents, hypothalamic inflammation plays a critical role in aging and age-related diseases. Hypothalamic inflammation has not previously been assessed in vivo in humans. We used Positron Emission Tomography (PET) with a radiotracer sensitive to the translocator protein (TSPO) expressed by activated microglia, to assess correlations between age and regional brain TSPO in a group of healthy subjects (n = 43, 19 female, aged 23-78), focusing on hypothalamus. We found robust age-correlated TSPO expression in thalamus but not hypothalamus in the combined group of women and men. This pattern differs from what has been described in rodents. Prominent age-correlated TSPO expression in thalamus in humans, but in hypothalamus in rodents, could reflect evolutionary changes in size and function of thalamus versus hypothalamus, and may be relevant to the appropriateness of using rodents to model human aging. When examining TSPO PET results in women and men separately, we found that only women showed age-correlated hypothalamic TSPO expression. We suggest this novel result is relevant to understanding a stark sex difference in human aging: that only women undergo loss of fertility-menopause-at mid-life. Our finding of age-correlated hypothalamic inflammation in women could have implications for understanding and perhaps altering reproductive aging in women.


Assuntos
Microglia , Receptores de GABA , Adulto , Idoso , Encéfalo/metabolismo , Feminino , Humanos , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Adulto Jovem
9.
Fluids Barriers CNS ; 19(1): 21, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287702

RESUMO

BACKGROUND: In sporadic Alzheimer's disease (AD), brain amyloid-beta (Aß) deposition is believed to be a consequence of impaired Aß clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer 18F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aß levels. METHODS: In the present study, we use two PET tracers, 18F-THK5351 and 11C-PiB to estimate CSF clearance calculated from early dynamic PET frames in 9 normal controls and 15 AD participants. RESULTS: we observed that the ventricular CSF clearance measures were correlated (r = 0.66, p < 0.01), with reductions in AD of 18 and 27%, respectively. We also replicated a significant relationship between ventricular CSF clearance (18F-THK5351) and brain Aß load (r = - 0.64, n = 24, p < 0.01). With a larger sample size, we extended our observations to show that reduced CSF clearance is associated with reductions in cortical thickness and cognitive performance. CONCLUSIONS: Overall, the findings support the hypothesis that failed CSF clearance is a feature of AD that is related to Aß deposition and to the pathology of AD. Longitudinal studies are needed to determine whether failed CSF clearance is a predictor of progressive amyloidosis or its consequence.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides , Amiloidose/complicações , Amiloidose/patologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Camundongos
10.
Artigo em Inglês | MEDLINE | ID: mdl-36876118

RESUMO

Repeated mild Traumatic Brain Injury (TBI) is a risk factor for Chronic Traumatic Encephalopathy (CTE), characterized pathologically by neurofibrillary tau deposition in the depths of brain sulci and surrounding blood vessels. The mechanism by which TBI leads to CTE remains unknown but has been posited to relate to axonal shear injury leading to release and possibly deposition of tau at the time of injury. As part of an IRB-approved study designed to learn how processes occurring acutely after TBI may predict later proteinopathy and neurodegeneration, we performed tau PET using 18F-MK6240 and MRI within 14 days of complicated mild TBI in three subjects. PET radiotracer accumulation was apparent in regions of traumatic hemorrhage in all subjects, with prominent intraparenchymal PET signal in one young subject with a history of repeated sports-related concussions. These results are consistent with off-target tracer binding to blood products as well as possible on-target binding to chronically and/or acutely-deposited neurofibrillary tau. Both explanations are highly relevant to applying tau PET to understanding TBI and CTE. Additional study is needed to assess the potential utility of tau PET in understanding how processes occurring acutely after TBI, such as release and deposition of tau and blood from damaged axons and blood vessels, may relate to development CTE years later.

11.
Front Aging Neurosci ; 13: 656430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935688

RESUMO

OBJECTIVE: Low-intensity transcranial ultrasound stimulation (TUS) is a non-invasive neuromodulation technique with high spatial resolution and feasible penetration depth. To date, the mechanisms of TUS modulated neural oscillations are not fully understood. This study designed a very low acoustic intensity (AI) TUS system that produces considerably reduced AI Ultrasound pulses (I SPTA < 0.5 W/cm2) when compared to previous methods used to measure regional neural oscillation patterns under different TUS parameters. METHODS: We recorded the local field potential (LFP) of five brain nuclei under TUS with three groups of simulating parameters. Spectrum estimation, time-frequency analysis (TFA), and relative power analysis methods have been applied to investigate neural oscillation patterns under different stimulation parameters. RESULTS: Under PRF, 500 Hz and 1 kHz TUS, high-amplitude LFP activity with the auto-rhythmic pattern appeared in selected nuclei when I SPTA exceeded 12 mW/cm2. With TFA, high-frequency energy (slow gamma and high gamma) was significantly increased during the auto-rhythmic patterns. We observed an initial plateau in nuclei response when I SPTA reached 16.4 mW/cm2 for RPF 500 Hz and 20.8 mW/cm2 for RPF 1 kHz. The number of responding nuclei started decreasing while I SPTA continued increasing. Under 1.5 kHz TUS, no auto-rhythmic patterns have been observed, but slow frequency power was increased during TUS. TUS inhibited most of the frequency band and generated obvious slow waves (theta and delta band) when stimulated at RPF = 1.5 kHz, I SPTA = 8.8 mW/cm2. CONCLUSION: These results demonstrate that very low intensity Transcranial Ultrasound Stimulation (VLTUS) exerts significant neuromodulator effects under specific parameters in rat models and may be a valid tool to study neuronal physiology.

12.
Epilepsy Behav ; 94: 297-300, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773449

RESUMO

Depression affects a large proportion of patients with epilepsy, and is likely due in part to biological mechanism. Hormonal dysregulation due to the disruptive effects of seizures and interictal epileptiform discharges on the hypothalamic-pituitary-adrenal axis likely contributes to high rates of depression in epilepsy. This paper reviews the largely unexplored role of neuroendocrine factors in epilepsy-related depression, focusing on Growth Hormone (GH). While GH deficiency is traditionally considered a childhood disorder manifested by impaired skeletal growth, GH deficiency in adulthood is now recognized as a serious disorder characterized by impairments in multiple domains including mood and quality of life. Could high rates of depression in patients with epilepsy relate to subtle GH deficiency? Because GH replacement therapy has been shown to improve mood and quality of life in patients with GH deficiency, this emerging area may hold promise for patients suffering from epilepsy-related depression.


Assuntos
Depressão/metabolismo , Transtorno Depressivo/metabolismo , Epilepsia/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Adulto , Criança , Hormônio do Crescimento Humano/deficiência , Humanos
13.
Hypertension ; 73(1): 197-205, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571554

RESUMO

Although there is an increasing agreement that hypertension is associated with cerebrovascular compromise, relationships between blood pressure (BP) and cerebral blood flow are not fully understood. It is not known what BP level, and consequently what therapeutic goal, is optimal for brain perfusion. Moreover, there is limited data on how BP affects hippocampal perfusion, a structure critically involved in memory. We conducted a cross-sectional (n=445) and longitudinal (n=185) study of adults and elderly without dementia or clinically apparent stroke, who underwent clinical examination and brain perfusion assessment (age 69.2±7.5 years, 62% women, 45% hypertensive). Linear models were used to test baseline BP-blood flow relationship and to examine how changes in BP influence changes in perfusion. In the entire group, systolic BP (SBP) was negatively related to cortical (ß=-0.13, P=0.005) and hippocampal blood flow (ß=-0.12, P=0.01). Notably, this negative relationship was apparent already in subjects without hypertension. Hypertensive subjects showed a quadratic relationship between SBP and hippocampal blood flow (ß=-1.55, P=0.03): Perfusion was the highest in subjects with mid-range SBP around 125 mm Hg. Longitudinally, in hypertensive subjects perfusion increased with increased SBP at low baseline SBP but increased with decreased SBP at high baseline SBP. Cortical and hippocampal perfusion decrease with increasing SBP across the entire BP spectrum. However, in hypertension, there seems to be a window of mid-range SBP which maximizes perfusion.


Assuntos
Pressão Sanguínea/fisiologia , Córtex Cerebral , Circulação Cerebrovascular/fisiologia , Hipocampo/irrigação sanguínea , Hipertensão , Idoso , Anti-Hipertensivos/uso terapêutico , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Correlação de Dados , Estudos Transversais , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , New York , Fluxo Sanguíneo Regional
14.
Neurobiol Aging ; 65: 201-205, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29499501

RESUMO

Alzheimer's disease (AD) is known to be associated with loss of cholinergic neurons in the nucleus basalis of Meynert, located in the posterior basal forebrain. Structural changes of septal nuclei, located in the anterior basal forebrain, have not been well studied in AD. Using a validated algorithm, we manually traced septal nuclei on high-resolution coronal magnetic resonance imaging (MRI) in 40 subjects with mild cognitive impairment (MCI) or AD, 89 healthy controls, and 18 subjects who were cognitively normal at the time of MRI but went on to develop AD an average of 2.8 years later. We found that cognitively normal subjects destined to develop AD in the future had enlarged septal nuclei as compared to both healthy controls and patients with current MCI or AD. To our knowledge, this is the first time a brain structure has been found to be enlarged in association with risk of AD. Further research is needed to determine if septal enlargement reflects neuroplastic compensation, amyloid deposition, inflammation, or another process and to determine whether it can serve as an early MRI biomarker of AD.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Prosencéfalo Basal/patologia , Voluntários Saudáveis , Núcleos Septais/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Prosencéfalo Basal/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Risco , Núcleos Septais/diagnóstico por imagem , Fatores de Tempo
15.
Sleep ; 39(11): 2041-2048, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27568802

RESUMO

STUDY OBJECTIVES: Emerging evidence suggests a role for sleep in contributing to the progression of Alzheimer disease (AD). Slow wave sleep (SWS) is the stage during which synaptic activity is minimal and clearance of neuronal metabolites is high, making it an ideal state to regulate levels of amyloid beta (Aß). We thus aimed to examine relationships between concentrations of Aß42 in the cerebrospinal fluid (CSF) and measures of SWS in cognitively normal elderly subjects. METHODS: Thirty-six subjects underwent a clinical and cognitive assessment, a structural MRI, a morning to early afternoon lumbar puncture, and nocturnal polysomnography. Correlations and linear regression analyses were used to assess for associations between CSF Aß42 levels and measures of SWS controlling for potential confounders. Resulting models were compared to each other using ordinary least squared linear regression analysis. Additionally, the participant sample was dichotomized into "high" and "low" Aß42 groups to compare SWS bout length using survival analyses. RESULTS: A significant inverse correlation was found between CSF Aß42 levels, SWS duration and other SWS characteristics. Collectively, total SWA in the frontal lead was the best predictor of reduced CSF Aß42 levels when controlling for age and ApoE status. Total sleep time, time spent in NREM1, NREM2, or REM sleep were not correlated with CSF Aß42. CONCLUSIONS: In cognitively normal elderly, reduced and fragmented SWS is associated with increases in CSF Aß42, suggesting that disturbed sleep might drive an increase in soluble brain Aß levels prior to amyloid deposition.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fases do Sono/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Biomarcadores/líquido cefalorraquidiano , Cognição/fisiologia , Feminino , Humanos , Modelos Lineares , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Polissonografia
16.
Epilepsia ; 57(9): e191-4, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381590

RESUMO

In animal models, inflammation is both a cause and consequence of seizures. Less is known about the role of inflammation in human epilepsy. We performed positron emission tomography (PET) using a radiotracer sensitive to brain inflammation in a patient with frontal epilepsy ~36 h after a seizure as well as during a seizure-free period. When statistically compared to a group of 12 matched controls, both of the patient's scans identified a frontal (supplementary motor area) region of increased inflammation corresponding to his clinically defined seizure focus, but the postseizure scan showed significantly greater inflammation intensity and spatial extent. These results provide new information about transient and chronic neuroinflammation in human epilepsy and may be relevant to understanding the process of epileptogenesis and guiding therapy.


Assuntos
Encefalite/etiologia , Epilepsias Parciais/complicações , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Encefalite/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Fatores de Tempo
17.
Sleep ; 39(6): 1253-60, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26951396

RESUMO

STUDY OBJECTIVES: To evaluate the role of orexin-A with respect to cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers, and explore its relationship to cognition and sleep characteristics in a group of cognitively normal elderly individuals. METHODS: Subjects were recruited from multiple community sources for National Institutes of Health supported studies on normal aging, sleep and CSF biomarkers. Sixty-three participants underwent home monitoring for sleep-disordered breathing, clinical, sleep and cognitive evaluations, as well as a lumbar puncture to obtain CSF. Individuals with medical history or with magnetic resonance imaging evidence of disorders that may affect brain structure or function were excluded. Correlation and linear regression analyses were used to assess the relationship between orexin-A and CSF AD-biomarkers controlling for potential sociodemographic and sleep confounders. RESULTS: Levels of orexin-A, amyloid beta 42 (Aß42), phosphorylated-tau (P-Tau), total-tau (T-Tau), Apolipoprotein E4 status, age, years of education, reported total sleep time, number of awakenings, apnea-hypopnea indices (AHI), excessive daytime sleepiness, and a cognitive battery were analyzed. Subjects were 69.59 ± 8.55 years of age, 57.1% were female, and 30.2% were apolipoprotein E4+. Orexin-A was positively correlated with Aß42, P-Tau, and T-Tau. The associations between orexin-A and the AD-biomarkers were driven mainly by the relationship between orexin-A and P-Tau and were not influenced by other clinical or sleep characteristics that were available. CONCLUSIONS: Orexin-A is associated with increased P-Tau in normal elderly individuals. Increases in orexin-A and P-Tau might be a consequence of the reduction in the proportion of the deeper, more restorative slow wave sleep and rapid eye movement sleep reported with aging. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov registration number NCT01962779.


Assuntos
Envelhecimento/líquido cefalorraquidiano , Envelhecimento/fisiologia , Cognição/fisiologia , Orexinas/metabolismo , Sono/fisiologia , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Idoso , Envelhecimento/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/análise , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Escolaridade , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fosforilação , Análise de Regressão , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA