Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 313(3): 151582, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37285706

RESUMO

Polaprezinc (PZ) plays a role in the protection of gastric mucosa and inhibiting Helicobacter pylori (H. pylori) growth in vitro. The objective of this study was to determine the protective effects of PZ on human gastric epithelial cells (GES-1) against H. pylori-induced damage, while also examining heat shock protein 70 (HSP70) as a potential underlying factor in this protection. Our findings revealed that PZ exerted bactericidal effects against H. pylori strains. We also observed that PZ mitigated the H. pylori-induced damage to GES-1 cells by increasing cell viability, reducing LDH release, and decreasing the secretion of pro-inflammatory factors such as MCP-1 and IL-6. Co-culturing PZ with GES-1 cells significantly up-regulated the GES-1 HSP70 expression in both a time and dose-dependent manner. Pre-incubating (for 12 h) or co-culturing (for 24 h) GES-1 cells with PZ reversed the down-regulation of HSP70 in GES-1 cells caused by H. pylori infection. However, when quercetin was used to inhibit the up-regulation of HSP70 in GES-1 cells, the protective effect of PZ on GES-1 cells was significantly reduced. Based on the results of this study, PZ exhibits a protective role on GES-1 cells against H. pylori injury, as well as a direct bactericidal effect on H. pylori. HSP70 is involved in the PZ-driven host cell protection against H. pylori injury. These findings provide insight into alternative strategies for H. pylori treatment.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Compostos Organometálicos , Humanos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/farmacologia , Citoproteção , Compostos Organometálicos/metabolismo , Compostos Organometálicos/farmacologia , Células Epiteliais/metabolismo , Infecções por Helicobacter/metabolismo , Mucosa Gástrica
2.
Microbiol Spectr ; 10(6): e0115222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354329

RESUMO

Rapid increase in resistance of Helicobacter pylori (H. pylori) has hindered antibiotics-based eradication efforts worldwide and raises the need for additional approaches. Here, we investigate the role of zinc-based compounds in inhibiting H. pylori growth and modulating antibiotic sensitivities, interrogate their downstream transcriptomic changes, and highlight the potential mechanism driving the observed effects. We showed that zinc acetate inhibited H. pylori growth and increased H. pylori sensitivity to levofloxacin. Transcriptomic profiling showed distinct gene expression patterns between zinc acetate treated groups versus controls. In particular, we independently replicated the association between zinc acetate treatment and increased ssrA expression. Knockdown of ssrA restored levofloxacin resistance to levels of the control group. In this study, we first demonstrated the role of zinc acetate in H. pylori growth and antibiotic sensitivities. Additionally, we explored the transcriptomic perturbations of zinc acetate followed by functional knockdown follow-up of differentially expressed ssrA, highlighting the role of tmRNA and trans-translation in H. pylori levofloxacin resistance. Our results provide alternative and complementary strategies for H. pylori treatment and shed light on the underlying mechanisms driving these effects. IMPORTANCE Helicobacter pylori (H. pylori) eradication plays an important role in gastric cancer prevention, but the antimicrobial resistance of H. pylori is fast becoming a growing concern. In this study, we investigated the role of zinc acetate in inhibiting H. pylori growth and modulating antibiotic sensitivities in vitro. Additionally, we explored the transcriptomic perturbations of zinc acetate followed by functional knockdown follow-up of differentially expressed ssrA, highlighting the role of tmRNA and trans-translation in H. pylori levofloxacin resistance. Our results open up a new horizon for the treatment of antibiotic-resistant H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Levofloxacino/farmacologia , Helicobacter pylori/genética , Acetato de Zinco/farmacologia , Claritromicina/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Transcriptoma , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
3.
Front Microbiol ; 12: 681911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093508

RESUMO

Efficacy of Helicobacter pylori (H. pylori) eradication therapy has declined due to rapid rises in antibiotic resistance. We investigated how increased temperature affected H. pylori (NCTC 11637) growth and its sensitivity to metronidazole in vitro. We performed transcriptomic profiling using RNA-sequencing to identify differentially expressed genes (DEGs) associated with increased temperature. Transcriptional pathways involved in temperature-driven metronidazole resistance changes were analyzed through bioinformatic and literature curation approaches. We showed that H. pylori growth was inhibited at 41°C and inhibition was more apparent with prolonged incubation. Resistance to metronidazole was also reduced-minimum inhibitory concentration for metronidazole decreased from > 256 µg/ml at 37°C to 8 µg/ml at 41°C after culturing for 3 days. RNA-sequencing results, which were highly concordant within treatment conditions, revealed more than one third of genes (583/1,552) to be differentially expressed at increased temperatures with similar proportions up and down-regulated. Quantitative real-time PCR validation for 8 out of 10 DEGs tested gave consistent direction in gene expression changes. We found enrichment for redox and oxygen radical pathways, highlighting a mechanistic pathway driving temperature-related metronidazole resistance. Independent literature review of published genes associated with metronidazole resistance revealed 46 gene candidates, 21 of which showed differential expression and 7 out of 9 DEGs associated with "redox" resistance pathways. Sanger sequencing did not detect any changes in genetic sequences for known resistance genes rdxA, frxA nor fdxB. Our findings suggest that temperature increase can inhibit the growth and reduce H. pylori resistance to metronidazole. Redox pathways are possible potential drivers in metronidazole resistance change induced by temperature. Our study provides insight into potential novel approaches in treating antibiotic resistant H. pylori.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA