Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 13(8): 4714-4733, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383784

RESUMO

Alismatis rhizoma (AR), the dried rhizome of Alisma orientale (Sam) Juzep, is effective in treating hyperlipidemia, but the mechanisms involved require further exploration. This study evaluated the hypolipidemic properties of AR using an integrated strategy combining network pharmacology with metabolomics and lipidomics. Firstly, a hyperlipidemia mouse model induced by a high-fat diet was established to evaluate the therapeutic effects of AR. Secondly, plasma metabolomics and lipidomics were used to identify differential metabolites and lipids, and metabolic pathway analysis was performed using MetaboAnalyst. Thirdly, network pharmacology, based on the metabolic profile of AR in vivo, was used to discover potential therapeutic targets. Finally, key targets were obtained through a compound-target-metabolite network, which was verified by molecular docking and quantitative real-time PCR (qPCR). Biochemistry analysis and histological examinations showed that AR exerted hypolipidemic effects on hyperlipidemic mice. Seventy potential biomarkers for the AR treatment of hyperlipidemia were identified by metabolomics and lipidomics, which were mainly involved in lipid metabolism, energy metabolism and amino acid metabolism. Eighteen potentially active compounds were identified in the plasma of mice after oral administration of AR, which were associated with 83 potential therapeutic targets. The PPAR signaling pathway was considered a crucial signaling pathway of AR against hyperlipidemia by KEGG analysis. The joint analysis showed that 6 upstream key targets were regulated by AR, including ALB, TNF, IL1B, MMP9, PPARA and PPARG. Molecular docking showed that active compounds of AR had high binding affinity with these key targets. qPCR further demonstrated that AR could reverse the mRNA expression of these key targets in hyperlipidemic mice. This study integrates network pharmacology with metabolomics and lipidomics to reveal the regulatory effects of AR on endogenous metabolites and validates key therapeutic targets, and represents the most systematic and in-depth study on the hypolipidemic activity of AR.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Lipidômica , Metabolômica , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Rizoma/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-34768050

RESUMO

As a fast, sensitive and selective method, liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS) has been used for studying the in vivo metabolism of traditional Chinese medicine (TCM). However, the rapid discovery and characterization of metabolites, especially isomers, remain challenging due to their complexity and low concentration in vivo. This study proposed a strategy to improve the structural annotation of prototypes and metabolites through characteristic ions and a quantitative structure-retention relationship (QSRR) model, and Alismatis Rhizoma (AR) triterpenes were used as an example. This strategy consists of four steps. First, based on an in-house database reported previously, prototypes and metabolites in biosamples were preliminarily identified. Second, the candidate structures of prototype compounds and metabolites were determined by characteristic ions, databases or potential metabolic pathways. Then, a QSRR model was established to predict the retention times of the proposed structure. Finally, the structures of unknown prototypes and metabolites were determined by matching experimental retention times with the predicted values. The QSRR model built by the genetic algorithm-multiple linear regression (GA-MLR) has excellent regression correlation (R2 = 0.9966). Based on this strategy, a total of 118 compounds were identified, including 47 prototypes and 71 metabolites, among which 61 unknown compounds were reasonably characterized. The typical compound identified by this strategy was successfully validated using a triterpene standard. This strategy can improve the annotation confidence of in vivo metabolites of TCM and facilitate further pharmacological research.


Assuntos
Alismataceae/química , Medicamentos de Ervas Chinesas , Triterpenos , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Fezes/química , Masculino , Medicina Tradicional Chinesa , Relação Quantitativa Estrutura-Atividade , Ratos , Ratos Sprague-Dawley , Rizoma/química , Espectrometria de Massas em Tandem , Triterpenos/análise , Triterpenos/química , Triterpenos/metabolismo
3.
J Proteome Res ; 20(9): 4553-4565, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34427088

RESUMO

Cisplatin is widely used for the treatment of various solid tumors. It is mainly administered by intravenous injection, and a substantial amount of the drug will bind to plasma proteins, a feature that is closely related to its pharmacokinetics, activity, toxicity, and side effects. However, due to the unique properties of platinum complexes and the complexity of the blood proteome, existing methods cannot systematically identify the binding proteome of cisplatin in blood. In this study, high-abundance protein separation and an ion mobility mass spectrometry-based 4D proteomic method were combined to systematically and comprehensively identify the binding proteins of cisplatin in blood. The characteristic isotope patterns of platinated peptides and a similarity algorithm were utilized to eliminate false-positive identification. Finally, 39 proteins were found to be platinated. Bioinformatics analysis showed that the identified proteins were mainly involved in the complement and coagulation cascade pathways. The binding ratio of some peptides with cisplatin was measured based on the area ratio of the free peptide using the parallel reaction monitoring method. This study provides a new method for systematically identifying binding proteins of metal drugs in blood, and the identified proteins might be helpful for understanding the toxicity of platinum anticancer drugs.


Assuntos
Antineoplásicos , Cisplatino , Cromatografia de Afinidade , Proteoma , Proteômica
4.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572935

RESUMO

Cisplatin and its analogues are widely used as chemotherapeutic agents in clinical practice. After being intravenously administrated, a substantial amount of platinum will bind with proteins in the blood. This binding is vital for the transport, distribution, and metabolism of drugs; however, toxicity can also occur from the irreversible binding between biologically active proteins and platinum drugs. Therefore, it is very important to study the protein-binding behavior of platinum drugs in blood. This review summarizes mass spectrometry-based strategies to identify and quantitate the proteins binding with platinum anticancer drugs in blood, such as offline high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC-ICP-MS) combined with electrospray ionization mass spectrometry (ESI-MS/MS) and multidimensional LC-ESI-MS/MS. The identification of in vivo targets in blood cannot be accomplished without first studying the protein-binding behavior of platinum drugs in vitro; therefore, relevant studies are also summarized. This knowledge will further our understanding of the pharmacokinetics and toxicity of platinum anticancer drugs, and it will be beneficial for the rational design of metal-based anticancer drugs.

5.
Exp Ther Med ; 15(5): 4414-4418, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725382

RESUMO

The effects of cisatracurium in combination with ventilation on inflammatory factors and immune variations in sepsis rats were investigated. A total of 54 male Sprague-Dawley rats were selected and divided randomly into three groups: Sham group (n=6), model group (n=24) and experiment group (n=24). Rats in the model and experiment groups underwent cecal ligation and puncture (CLP) for establishment of sepsis model. Rats in experiment group additionally received cisatracurium medication in combination with ventilation for treatment. At 6, 12 and 24 h after CLP, the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 and procalcitonin (PCT) in serum and the ratio of leukocyte to neutrophil in peripheral blood was also detected. Twenty-four hours later, the expression of high mobility group box 1 (HMGB1) in lung tissues and cluster of differentiation (CD) 4+ and CD8+ in T-lymphocyte subsets were also detected, and the wet/dry (W/D) ratio of lung was measured. Compared with that in model group, the levels of inflammatory factors in the experiment group were significantly decreased, while the indicators in assays of cellular immunity were obviously elevated. Ratio of leukocyte to neutrophil in peripheral blood was significantly decreased after treatment. Cisatracurium in combination with ventilation can alleviate the inflammatory injury to organs in sepsis rats through inhibiting the inflammatory responses and regulating the immune functions, which manifests a new significance in guiding the clinical diagnosis and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA