Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120813, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34998050

RESUMO

Wheat flour (WF) is a common ingredient in staple foods. However, the presence of intentional or unintentional adulterants makes it difficult to guarantee WF quality. Multi-grained cascade forest (gcForest) model, a non-neural network deep learning structure, fused with image-spectra features from hyperspectral imaging (HSI) was employed for detecting adulterant type (peanut, walnut, or benzoyl peroxide) and the corresponding concentration (0.03%, 0.05%, 0.1%, 0.5%, 1%, and 2%). Based on the spectra of full wavelength and effective wavelength (EW) from hyperspectral images of WF samples, the gcForest-related models exhibited high performance (lowest ACCP = 92.45%) and stability (lowest area under the curve = 0.9986). Furthermore, the fusion of the EW and the image features extracted by the symmetric all convolutional neural network (SACNN) was used to establish the gcForest-related models. The maximum accuracy improvement of the fusion feature model relative to the single spectral model and the image model was 2.45% and 44.37%, respectively. The results indicate that the gcForest-related model, combined with the image-spectra fusion feature of HSI, provides an effective tool for detection in food and agriculture.


Assuntos
Farinha , Imageamento Hiperespectral , Farinha/análise , Florestas , Redes Neurais de Computação , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA