Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362450

RESUMO

Discectomy is the surgical standard of care to relieve low back pain caused by intervertebral disc (IVD) herniation. However, there remains annulus fibrosus (AF) defect and nucleus pulposus (NP) degeneration, which often result in recurrent herniation (re-herniation). Herein, we develop a polyphenol-modified waterborne polyurethane bioadhesives (PPU-glues) to promote therapy prognosis after discectomy. Being composed of tannic acid (TA) mixed cationic waterborne polyurethane nanodispersions (TA/WPU+) and curcumin (Cur) embedded anionic waterborne polyurethane nanodispersions (Cur-WPU-), PPU-glue gels rapidly (<10 s) and exhibits low swelling ratios, tunable degradation rates and good biocompatibility. Due to the application of an adhesion strategy combing English ivy mechanism and particle packing theory, PPU-glue also shows considerable lap shear strength against wet porcine skin (≈58 kPa) and burst pressure (≈26 kPa). The mismatched particle sizes and the opposite charges of TA/WPU+ and Cur-WPU- in PPU-glue bring electrostatic interaction and enhance particle packing density. PPU-glue possesses superior reactive oxygen species (ROS)-scavenging capacity derived from polyphenols. PPU-glue can regulate extracellular matrix (ECM) metabolism in degenerated NP cells, and it can promote therapy biologically and mechanically in degenerated rat caudal discs. In summary, this study highlights the therapeutic approach that combines AF seal and NP augmentation, and PPU-glue holds great application potentials for post discectomy therapy. STATEMENT OF SIGNIFICANCE: Currently, there is no established method for the therapy of annulus fibrosus (AF) defect and nucleus pulposus (NP) degeneration after discectomy. Herein, we developed a polyphenol-modified biomimetic polyurethane bioadhesives (PPU-glue) with strong adhesive strength and superior bioactive property. The adhesion strategy that combined a particle packing theory and an English ivy mechanism was firstly applied to the intervertebral disc repair field, which benefited AF seal. The modified method of incorporating polyphenols was utilized to confer with ROS-scavenging capacity, ECM metabolism regulation ability and anti-inflammatory property, which promoted NP augmentation. Thus, PPU-glue attained the synergy effect for post discectomy therapy, and the design principle could be universally expanded to the bioadhesives for other surgical uses.

2.
Bioact Mater ; 41: 108-126, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39108335

RESUMO

Inspired by tug-of-war, a game-changing bone-tendon fixation paradigm was developed. Specifically, injectable citrate-based bioactive self-expansive and planar-fixing screw (iCSP-Scr) consisting of reactive isocyanate (NCO) terminalized citrate-based polyurethane, proanthocyanidin modified hydroxyapatite (HAp) and water (with/without porogen) was developed and administrated in the bone-tendon gap. Instead of the "point to point" tendon fixation by traditional interface screws, along with the moisture-induced crosslinking and expansion of iCSP-Scr within the confined space of the irregularly shaped bone-tendon gap, the tendon graft was evenly squeezed into the bone tunnel in a "surface to surface" manner to realize strong and stable bone-tendon fixation via physical expansion, mechanical interlocking and chemical bonding (between -NCO and the -NH2, -SH groups on bone matrix). The optimized iCSP-Scr exhibited rapid crosslinking, moderate expansion rate, high porosity after crosslinking, as well as tunable elasticity and toughness. The iCSP-Scr possessed favorable biodegradability, biocompatibility, and osteoinductivity derived from citrate, PC and HAp, it was able to promote osteogenesis and new bone growth inward of bone tunnel thus further enhanced the bone/iCSP-Scr mechanical interlock, ultimately leading to stronger tendon fixation (pull-out force 106.15 ± 23.15 N) comparing to titanium screws (93.76 ± 17.89 N) after 14 weeks' ACL reconstruction in a rabbit model. The iCSP-Scr not only can be used as a self-expansive screw facilitating bone-tendon healing, but also can be expanded into other osteogenic application scenarios.

3.
Regen Biomater ; 11: rbae054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845852

RESUMO

Following peripheral nerve anastomosis, the anastomotic site is prone to adhesions with surrounding tissues, consequently impacting the effectiveness of nerve repair. This study explores the development and efficacy of a decellularized epineurium as an anti-adhesive biofilm in peripheral nerve repair. Firstly, the entire epineurium was extracted from fresh porcine sciatic nerves, followed by a decellularization process. The decellularization efficiency was then thoroughly assessed. Subsequently, the decellularized epineurium underwent proteomic analysis to determine the remaining bioactive components. To ensure biosafety, the decellularized epineurium underwent cytotoxicity assays, hemolysis tests, cell affinity assays, and assessments of the immune response following subcutaneous implantation. Finally, the functionality of the biofilm was determined using a sciatic nerve transection and anastomosis model in rats. The result indicated that the decellularization process effectively removed cellular components from the epineurium while preserving a number of bioactive molecules, and this decellularized epineurium was effective in preventing adhesion while promoting nerve repairment and functional recovery. In conclusion, the decellularized epineurium represents a novel and promising anti-adhesion biofilm for enhancing surgical outcomes of peripheral nerve repair.

4.
Biomater Adv ; 159: 213803, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447384

RESUMO

Autologous nerve grafts have been considered the gold standard for peripheral nerve grafts. However, due to drawbacks such as functional loss in the donor area and a shortage of donor sources, nerve conduits are increasingly being considered as an alternative approach. Polymer materials have been widely studied as nerve repair materials due to their excellent processing performance. However, their limited biocompatibility has restricted further clinical applications. The epineurium is a natural extra-neural wrapping structure. After undergoing decellularization, the epineurium not only reduces immune rejection but also retains certain bioactive components. In this study, decellularized epineurium (DEP) derived from the sciatic nerve of mammals was prepared, and a bilayer nerve conduit was created by electrospinning a poly (l-lactide-co-ε-caprolactone) (PLCL) membrane layer onto the outer surface of the DEP. Components of the DEP were examined; the physical properties and biosafety of the bilayer nerve conduit were evaluated; and the functionality of the nerve conduit was evaluated in rats. The results demonstrate that the developed bilayer nerve conduit exhibits excellent biocompatibility and mechanical properties. Furthermore, this bilayer nerve conduit shows significantly superior therapeutic effects for sciatic nerve defects in rats compared to the pure PLCL nerve conduit. In conclusion, this research provides a novel strategy for the design of nerve regeneration materials and holds promising potential for further clinical translation.


Assuntos
Tecido Nervoso , Nervo Isquiático , Ratos , Animais , Nervo Isquiático/cirurgia , Nervo Isquiático/fisiologia , Próteses e Implantes , Polímeros/farmacologia , Mamíferos
5.
ACS Appl Mater Interfaces ; 15(44): 50836-50853, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37903387

RESUMO

The latest advancements in cellular bioenergetics have revealed the potential of transferring chemical energy to biological energy for therapeutic applications. Despite efforts, a three-dimensional (3D) scaffold that can induce long-term bioenergetic effects and facilitate tissue regeneration remains a big challenge. Herein, the cellular energetic metabolism promotion ability of l-malate, an important intermediate of the tricarboxylic acid (TCA) cycle, was proved, and a series of bioenergetic porous scaffolds were fabricated by synthesizing poly(diol l-malate) (PDoM) prepolymers via a facial one-pot polycondensation of l-malic acid and aliphatic diols, followed by scaffold fabrication and thermal-cross-linking. The degradation products of the developed PDoM scaffolds can regulate the metabolic microenvironment by entering mitochondria and participating in the TCA cycle to elevate intracellular adenosine triphosphate (ATP) levels, thus promoting the cellular biosynthesis, including the production of collagen type I (Col1a1), fibronectin 1 (Fn1), and actin alpha 2 (Acta2/α-Sma). The porous PDoM scaffold was demonstrated to support the growth of the cocultured mesenchymal stem cells (MSCs) and promote their secretion of bioactive molecules [such as vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), and basic fibroblast growth factor (bFGF)], and this stem cells-laden scaffold architecture was proved to accelerate wound healing in a critical full-thickness skin defect model on rats.


Assuntos
Malatos , Alicerces Teciduais , Ratos , Animais , Malatos/farmacologia , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
6.
Front Bioeng Biotechnol ; 11: 1103435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937756

RESUMO

Introduction: The porcine nerve-derived extracellular matrix (ECM) fabricated as films has good performance in peripheral nerve regeneration. However, when constructed as conduits to bridge nerve defects, ECM lacks sufficient mechanical strength. Methods: In this study, a novel electrospun bilayer-structured nerve conduit (BNC) with outer poly (L-lactic acid-co-ε-caprolactone) (PLA-PCL) and inner ECM was fabricated for nerve regeneration. The composition, structure, and mechanical strength of BNC were characterized. Then BNC biosafety was evaluated by cytotoxicity, subcutaneous implantation, and cell affinity tests. Furthermore, BNC was used to bridge 10-mm rat sciatic nerve defect, and nerve functional recovery was assessed by walking track, electrophysiology, and histomorphology analyses. Results: Our results demonstrate that BNC has a network of nanofibers and retains some bioactive molecules, including collagen I, collagen IV, laminin, fibronectin, glycosaminoglycans, nerve growth factor, and brain-derived neurotrophic factor. Biomechanical analysis proves that PLA-PCL improves the BNC mechanical properties, compared with single ECM conduit (ENC). The functional evaluation of in vivo results indicated that BNC is more effective in nerve regeneration than PLA-PCL conduit or ENC. Discussion: In conclusion, BNC not only retains the good biocompatibility and bioactivity of ECM, but also obtains the appropriate mechanical strength from PLA-PCL, which has great potential for clinical repair of nerve defects.

7.
ACS Appl Bio Mater ; 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35944491

RESUMO

Despite the current sanitation practices to decontaminate food-contact surfaces, persistent biofilms still pose significant threats to human health by inducing cross-contamination. This study aims to enhance the antimicrobial activity of low-dose silver nanoparticles (AgNPs) against foodborne pathogens and their biofilms through the development of a biobased delivery carrier for metallic nanoparticles. In this study, chicken eggshell powder (EP) was used as a biocompatible delivery carrier, and it possesses a strong ability to encapsulate green-synthesized AgNPs with an encapsulation efficiency of 80.18%. The EP carriers stabilized AgNPs in an organic-rich environment and prevented the aggregation of nanoparticles. The results of antimicrobial test demonstrate that EP significantly enhanced the antimicrobial efficacy of low-dose AgNPs (2 µg/mL), enabling 5-log reductions of planktonic Escherichia coli and Listeria innocua within 25 min and 60 min treatments, respectively, even in the presence of high organic content (chemical oxygen demand, COD = 1000 mg/L). Due to the high affinity of EP to bind biofilms, the encapsulated low-dose AgNPs can inactivate approximately 2-log CFU/cm2 of biofilms within a 2-h treatment. The proposed AgNPs@EP composite with a low silver concentration (2 µg/mL) can effectively inactivate and remove biofilms from food-contact surfaces in which such a low concentration of AgNPs is unlikely to induce negative impacts on human health and environment. Therefore, this antimicrobial AgNPs@EP composite can potentially be used as a biobased sanitizer for food-contact surfaces in a food manufacturing plant.

8.
Tissue Eng Part A ; 28(9-10): 394-404, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34605672

RESUMO

Coronary artery bypass graft (CABG) surgery is an impactful treatment for coronary heart disease. Intimal hyperplasia is the central reason for the restenosis of vein grafts (VGs) after CABG. The introduction of external vascular sheaths around VGs can effectively inhibit intimal hyperplasia and ensure the patency of VGs. In this study, the well-known biodegradable copolymer poly (ɛ-caprolactone-co-l,l-lactide) (PLCL) was electrospun into high porosity external sheaths. The prednisone loaded in the PLCL sheath was slowly released during the degradation process of PLCL. Under the combined effects of sheath and prednisone, intimal hyperplasia was inhibited. For the cell experiments, all sheaths show low cytotoxicity to L929 cells at different concentrations at different time intervals. The ultrasonography and histological results showed prominent dilation and intimal hyperplasia of VG without sheath after 2 months of surgery. But there was no dilation in PLCL and PLCLPrednisone groups. Of note, the prednisone-loaded sheath group exhibited efficacy in inhibiting intimal hyperplasia and ensured graft patency. Impact statement To inhibit intimal hyperplasia after coronary artery bypass graft, the use of external vascular sheaths can prevent vein graft (VG) dilatation, then reduce turbulent blood flow shear stress to vessel wall, and lower the stimulation of shear stress to smooth muscle cells (SMCs), so as to prevent the proliferation and migration of vascular SMC. We provide a biodegradable sheath electrospun by poly (ɛ-caprolactone-co-l,l-lactide) (PLCL) loading prednisone and utilize it around VG in animal models. Vascular ultrasound examinations show strong evidence of vascular patency. The histological alterations of VGs in PLCLPrednisone group gave a narrower intima layer owing to the inhibition effect of prednisone.


Assuntos
Oclusão de Enxerto Vascular , Túnica Íntima , Animais , Caproatos , Dioxanos , Oclusão de Enxerto Vascular/patologia , Oclusão de Enxerto Vascular/prevenção & controle , Hiperplasia/patologia , Lactonas , Prednisona/farmacologia , Túnica Íntima/patologia , Grau de Desobstrução Vascular
9.
Regen Biomater ; 8(6): rbab052, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34584748

RESUMO

On account of the poor biocompatibility of synthetic prosthesis, millions of rhinoplasty recipients have been forced to choose autologous costal cartilage as grafts, which suffer from limited availability, morbidity at the donor site and prolonged operation time. Here, as a promising alternative to autologous costal cartilage, we developed a novel xenogeneic costal cartilage and explored its feasibility as a rhinoplasty graft for the first time. Adopting an improved decellularization protocol, in which the ionic detergent was substituted by trypsin, the resulting decellularized graft was confirmed to preserve more structural components and better mechanics, and eliminate cellular components effectively. The in vitro and in vivo compatibility experiments demonstrated that the decellularized graft showed excellent biocompatibility and biosecurity. Additionally, the functionality assessment of rhinoplasty was performed in a rabbit model, and the condition of grafts after implantation was comprehensively evaluated. The optimized graft exhibited better capacity to reduce the degradation rate and maintain the morphology, in comparison to the decellularized costal cartilage prepared by conventional protocol. These findings indicate that this optimized graft derived from decellularized xenogeneic costal cartilage provides a new prospective for future investigations of rhinoplasty prosthesis and has great potential for clinical application.

10.
Acta Biomater ; 134: 160-176, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303866

RESUMO

Adhesion often occurs after tendon injury, and results in sliding disorder and movement limitation with no ideal solution for it in clinic. In this study, an anti-adhesion membrane, i.e., decellularized tendon matrix (DTM) for tendon is successfully prepared by an optimized tendon decellularization method from homologous extracellular matrix. Microsection technology has been used to optimize the method of decellularization in order to better preserve the bioactive components in tissues and reduce the chemical reagent residues on the premise of effective decellularization with relatively shorter time and less reagents for decellularization. The physic-chemical properties and biological functions of DTM are evaluated, and high-throughput and high-precision tandem mass tags (TMT) labeling proteomics technology is used to analyze protein components of DTM, which may provide the scientific support for application of the innovative product. In vitro biosafety tests show that DTM not only is non-toxic but also promote cell proliferation. Subcutaneous implantation test confirms that DTM is completely degraded after 12 weeks and there is no obvious inflammatory reaction. The results of Achilles tendon repair in rabbits show that DTM can not only prevent tendon adhesion but also improve the quality of tendon repair, which demonstrates its tremendous application potential. STATEMENT OF SIGNIFICANCE: There is no ideal solution for adhesion after tendon injury. In this study, a dense tendon anti-adhesion membrane (DTM) was successfully prepared from homologous extracellular matrix (ECM). This DTM could effectively retain bioactive ingredients, and prevent adhesion as well as improve the quality of tendon repair in vivo. An optimized decellularization method was used which could effectively decellularize tendon in a short time, better preserve bioactive components, and reduce reagent residues. For the first time, high-throughput and high-precision tandem mass tags (TMT) labeling proteomics technology was used to qualitatively and quantitatively analyze the protein composition of fresh tendon, acellular tendon and DTM, which provided not only scientific support for the application of DTM, but also comprehensive and accurate data support for related research of bovine tendons and decellularization.


Assuntos
Traumatismos dos Tendões , Alicerces Teciduais , Animais , Bovinos , Proliferação de Células , Matriz Extracelular , Coelhos , Tendões , Engenharia Tecidual
11.
Bioact Mater ; 6(9): 2927-2945, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33732964

RESUMO

Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM.

12.
J Biomed Mater Res A ; 108(1): 19-29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430044

RESUMO

The objective of this study was to fabricate an acellular sheep periosteum and explore its potential application in guided bone regeneration. Sheep periosteum was collected and decellularized by a modified decellularization protocol. The effectiveness of cell removal was proved by hematoxylin and eosin and 4',6-diamidino-2-phenylindole staining, DNA quantitative test, and agarose gel electrophoresis. After decellularization, its microstructure was found to become more porous while the integrality of collagen fibers remained undamaged, and the contents of collagen and glycosaminoglycan were not decreased significantly. Biomechanical analysis showed that the elastic modulus was significantly declined, while the yield stress was not affected, probably due to the collagen integrality. In vitro study of CCK-8 assay demonstrated that the acellular periosteum not only had no toxic effect to the MC3T3-E1 cells, but benefited the cell proliferation to some degree. In vivo experiment of guided bone regeneration was performed using a rabbit cranial model. Micro-CT and histological results revealed that the acellular periosteum not only effectively prevented the ingrowth of fibrous connective tissues, but also potentially facilitated bone regeneration. In conclusion, acellular sheep periostea, with wider sources, less costs, and more convenient fabrication process, would have great potential in the employment for guided bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Regeneração Tecidual Guiada , Periósteo/fisiologia , Animais , Morte Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Masculino , Periósteo/diagnóstico por imagem , Periósteo/ultraestrutura , Coelhos , Reprodutibilidade dos Testes , Ovinos , Crânio/diagnóstico por imagem , Crânio/cirurgia , Microtomografia por Raio-X
13.
Biomed Mater ; 15(1): 015013, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31747647

RESUMO

This study addresses the fabrication of an extracellular matrix material of the acellular sheep periosteum and the systematic evaluation of its biocompatibility to explore its potential application in guided bone regeneration. Sheep periosteum was harvested and decellularized by a combined decellularization protocol. The effectiveness of cell removal was proved and residual α-Gal antigen was also quantitatively detected. Then, mouse MC3T3-E1 cells were seeded onto the acellular periosteum. A scanning electron microscope (SEM) was used to record the whole process of cell adhesion. The CCK-8 assay suggested that the acellular periosteum not only had zero toxic effect on pre-osteoblasts, but played a positive role in cell proliferation. We also tested whether the acellular periosteum possesses favorable osteogenesis induction activity using an alkaline phosphatase (ALP) assay and a quantitative real-time PCR (Col I, Runx2, OCN) assay. An in vivo study of a subcutaneous implantation test using Sprague Dawley (SD) rats was performed to detect the changes in IL-2, IFN-γ and IL-4 in serum and elucidate the host's local response to acellular periosteum through hematoxylin and eosin (HE) and immunohistochemical staining. The results show that acellular sheep periosteum did not elicit a severe immunogenic response via the Th1 pathway, unlike fresh sheep periosteum. In conclusion, acellular sheep periosteum possesses favorable biocompatibility to be employed for guided bone regeneration.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Regeneração Tecidual Guiada/métodos , Periósteo/metabolismo , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Camundongos , Osteogênese , Ratos , Ratos Sprague-Dawley , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA