Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411470, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145769

RESUMO

The stability of aqueous zinc metal batteries is significantly affected by side reactions and dendrite growth on the anode interface, which primarily originate from water and anions. Herein, we introduce a multi H-bond site additive, 2, 2'-Sulfonyldiethanol (SDE), into an aqueous electrolyte to construct a sieving-type electric double layer (EDL) by hydrogen bond interlock in order to address these issues. On the one hand, SDE replaces H2O and SO42- anions that are adsorbed on the zinc anode surface, expelling H2O/SO42- from the EDL and thereby reducing the content of H2O/SO42- at the interface. On the other hand, when Zn2+ are de-solvated at the interface during the plating, the strong hydrogen bond interaction between SDE and H2O/SO42- can trap H2O/SO42- from the EDL, further decreasing their content at the interface. This effectively sieves them out of the zinc anode interface and inhibits the side reactions. Moreover, the unique characteristics of trapped SO42- anions can restrict their diffusion, thereby enhancing the transference number of Zn2+ and promoting dendrite-free deposition and growth of Zn. Consequently, utilizing an SDE/ZnSO4 electrolyte enables excellent cycling stability in Zn//Zn symmetrical cells and Zn//MnO2 full cells with lifespans exceeding 3500 h and 2500 cycles respectively.

2.
J Colloid Interface Sci ; 663: 532-540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38422978

RESUMO

The performance of thin lithium metal anodes is affected due to issues that weaken the electrode-electrolyte interphase. In this work, a coating layer serving as a Li+ traffic controller based on hexadecyl trimethyl ammonium bis(trifluoromethanesulphonyl)imide ([CTA][TFSI]) and poly (vinylidene difluoride co-hexafluoropropylene) (P(VDF-HFP)) is used to stabilize the thin lithium metal interface. The CTA+ ions in the coating layer can effectively regulate the distribution of Li+ concentration to promote uniform deposition of lithium. The anion of [CTA][TFSI] can optimize solid electrolyte interphase (SEI) with inorganic-rich components, which improve the ionic conductivity and reaction kinetics. Furthermore, the flexible polymer skeleton can fortify the fragile SEI, facilitating the consistent operation of the battery. Due to these improvements, a thin Li metal anode (4 mAh cm-2) with a coating layer in a Li||Li symmetric cell demonstrates a lifespan of 600 h at 1 mA cm-2 and 1 mAh cm-2. Notably, full cells with an ultra-low negative electrode/positive electrode = 1 (N/P = 1) demonstrate a stable performance over 200 cycles and 90 cycles at 0.5C and 1C (1C = 170 mA g-1), respectively.

3.
ACS Nano ; 18(4): 3752-3762, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232329

RESUMO

The performance of aqueous zinc metal batteries is significantly compromised by the stability of the solid electrolyte interphase (SEI), which is intimately linked to the structure of the electrical double layer (EDL) between the zinc anode and electrolyte. Furthermore, understanding the mechanical behavior of SEI is crucial, as it governs its response to stress induced by volume changes, fracture, or deformation. In this study, we introduce l-glutamine (Gln) as an additive to regulate the adsorbed environment of the EDL and in situ produce a hybrid SEI consisting of ZnS and Gln-related species. The results of the nanoindentation test indicate that the hybrid SEI exhibits a low modulus and low hardness, alongside exceptional shape recovery capability, which effectively limits side reactions and enables topological adaptation to volume fluctuations in zinc anodes during zinc ion plating/stripping, thereby enabling Zn//Zn symmetric cells to exhibit an ultralong cycle life of 4000 h in coin cells and a high cumulative capacity of 18,000 mA h in pouch cells. More importantly, the superiority of the formulated strategy is further demonstrated in Zn//NH4V4O10 full cells at different N/P ratios of 5.2, 4.9, 3.5, and 2.4. This provides a promising approach for future interfacial modulation in aqueous battery chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA