Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(1): e202316527, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37983665

RESUMO

Developing a facile strategy to realize fine-tuning of phosphorescence color in time-dependent room temperature phosphorescence (RTP) materials is essential but both theoretically and practically rarely exploited. Through simultaneously confining carboxyl dimer association and isolated carboxyl into the particle via a simple hydrothermal treatment of polyacrylic acid, a dual-peak emission of red phosphorescence (645 nm) and green phosphorescence (550 nm) was observed from carbonized polymer dots (CPDs). The ratio of the two luminescent species can be well regulated by hydrochloric acid inhibiting the dissociation of carboxyl to promote hydrogen bond. Due to comparable but different lifetimes, color-tunable time-dependent RTP with color changing from yellow to green or orange to green were obtained. Based on the crosslinking enhanced emission effect, the phosphorescence visible time was even extended to 7 s through introducing polyethylenimide. This study not only proposes a novel and facile method for developing CPDs with color-tunable time-dependent RTP, but also provides a bran-new non-conjugated red phosphorescence unit and its definite structure.

2.
ACS Appl Mater Interfaces ; 15(21): 26060-26068, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37209113

RESUMO

Flexible transparent hydrophobic coating films with excellent scratch resistance have important applications in many fields, especially for optical materials. Herein, a hydrophobic composite coating film was prepared and used as a polymer film protective material by combining 3-glycidyloxypropyltrimethoxysilane (GPTMS)-modified Si-doped carbonized polymer dots (Si-CPDs) with mono-trimethoxysilyl-terminated poly(dimethyl siloxane) (PDMS). The Si-CPDs derived from tetramethyl disiloxane propylamine tetraacetic acid and multi-amino oligosiloxanes were successfully prepared via one-step hydrothermal method and then grafted by GPTMS to obtain modified Si-CPDs (mSi-CPDs). Among them, mSi-CPDs act as a matrix layer, and PDMS acts as a low-surface energy layer. Cross-linking the Si-O-Si network of the coating film was formed through sol-gel chemistry. Driven by the hydrophilic-hydrophobic effect, PDMS trends to aggregate at the film surface, thus avoiding the phase separation which can affect transparency. The highly cross-linked network and the presence of hard silica core provide a high hardness to stand the steel-wool scratch. Flexible polymer chains impart the coating film an outstanding bendability. Introduction of PDMS makes the coating film possess hydrophobicity and anti-graffiti function.

3.
Adv Sci (Weinh) ; 10(12): e2207621, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36737845

RESUMO

Seeking clean energy as an alternative to traditional fossil fuels is the inevitable choice to realize the sustainable development of the society. Photocatalytic technique is considered a promising energy conversion approach to store the abundant solar energy into other wieldy energy carriers like chemical energy. Carbon dots, as a class of fascinating carbon nanomaterials, have already become the hotspots in numerous photoelectric researching fields and particularly drawn keen interests as metal-free photocatalysts owing to strong UV-vis optical absorption, tunable energy-level configuration, superior charge transfer ability, excellent physicochemical stability, facile fabrication, low toxicity, and high solubility. In this review, the classification, microstructures, general synthetic methods, optical and photoelectrical properties of carbon dots are systematically summarized. In addition, recent advances of carbon dots based photoinduced reactions including photodegradation, photocatalytic hydrogen generation, CO2 conversion, N2 fixation, and photochemical synthesis are highlighted in detail, deep insights into the roles of carbon dots in various systems combining with the photocatalytic mechanisms are provided. Finally, several critical issues remaining in photocatalysis field are also proposed.

4.
Adv Sci (Weinh) ; 9(30): e2203474, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047633

RESUMO

Carbon dots (CDs) or carbonized polymer dots (CPDs) are an emerging class of optical materials that have exceptional applications in optoelectronic devices, catalysis, detection, and bioimaging. Although cell studies of CPDs have produced impressive results, in vivo imaging requires available CPDs to fluoresce in the near-infrared-II (NIR-II) window (1000-1700 nm). Here, a two-step bottom-up strategy is developed to synthesize NIR-CPDs that provide bright emissions in both NIR-I and NIR-II transparent imaging windows. The designed strategy includes a hydrothermal reaction to form a stable carbon core with aldehyde groups, followed by the Knoevenagel reaction to tether the molecular emission centers. This procedure is labor-saving, cost-efficient, and produces a high yield. The NIR-CPDs enable high-performance NIR-II angiography and real-time imaging of the disease degree of colitis noninvasively. This technology may therefore provide a next-generation synthesis strategy for CPDs with rational molecular engineering that can accurately tune the absorption/emission properties of NIR-emissive CPDs.


Assuntos
Corantes Fluorescentes , Polímeros , Carbono , Aldeídos
5.
ACS Appl Mater Interfaces ; 14(12): 14504-14512, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290026

RESUMO

The rapid development of optical and electronic devices has driven up the demand of high performance optical protective films to avoid exterior influence and extend the service life. But it is not easy to obtain an ideal coating film with high transmittance, high hardness, and good flexibility. Herein, by taking advantage of the special core-shell structure of carbonized polymer dots (CPDs), we propose a strategy to build up a nanoscale soft-hard segment microstructure for optical protective coating materials. The CPDs with hard core and soft polymer chain shell are prepared from citric acid and (3-aminopropyl)triethoxysilane. The as-prepared CPDs can be converted directly to the coating film by the dehydration and cross-linking. In addition to the good optical transmittance, the final film exhibits simultaneously ultrahigh 9H pencil hardness to stand 4000 cycles of a steel-wool wear test, and excellent flexibility to stand bending and rolling-up.

6.
Light Sci Appl ; 11(1): 56, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273150

RESUMO

Revealing the photoluminescence (PL) origin and mechanism is a most vital but challenging topic of carbon dots. Herein, confined-domain crosslink-enhanced emission (CEE) effect was first studied by a well-designed model system of carbonized polymer dots (CPDs), serving as an important supplement to CEE in the aspect of spatial interactions. The "addition-condensation polymerization" strategy was adopted to construct CPDs with substituents exerting different degrees of steric hindrance. The effect of confined-domain CEE on the structure and luminescence properties of CPDs have been systematically investigated by combining characterizations and theoretical calculations. Such tunable spatial interactions dominated the coupling strength of the luminophores in one particle, and eventually resulted in the modulated PL properties of CPDs. These findings provide insights into the structural advantages and the PL mechanism of CPDs, which are of general significance to the further development of CPDs with tailored properties.

7.
Light Sci Appl ; 10(1): 142, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253707

RESUMO

Carbon dots (CDs) have received immense attention in the last decade because they are easy-to-prepare, nontoxic, and tailorable carbon-based fluorescent nanomaterials. CDs can be categorized into three subgroups based on their morphology and chemical structure: graphene quantum dots (GQDs), carbon quantum dots (CQDs), and carbonized polymer dots (CPDs). The detailed structures of the materials can vary significantly, even within the same category. This property is particularly predominant in chemically synthesized CPDs, as their formation proceeds via the polymerization-carbonization of molecules or polymer precursors. Abundant precursors endow CPDs with versatile structures and properties. A wide variety of carbon nanomaterials can be grouped under the category of CPDs because of their observed diversity. It is important to understand the precursor-dependent structural diversity observed in CPDs. Appropriate nomenclature for all classes and types of CPDs is proposed for the better utilization of these emerging materials.

8.
ACS Appl Mater Interfaces ; 12(34): 38593-38601, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846498

RESUMO

Recently, the room-temperature phosphorescence (RTP) properties of carbon dots (CDs) have attracted significant interest. However, the regulation of RTP emission faces great challenges because of untunable emissive lifetime and wavelength. Here, ultrahigh-yield acrylamide-based N-doped carbonized polymer dots (AN-CPDs) with ultralong RTP lifetime are synthesized by a one-step hydrothermal addition polymerization and carbonization strategy. The RTP lifetime and wavelength of the proposed AN-CPDs can be regulated by changing the carbonization degree. Thus, the AN-CPDs' RTP lifetimes are in the range of 61.4-466.5 ms, while the RTP emission wavelengths vary from 485 to 558 nm. Further experiment and theoretical calculation proved that RTP can be attributed to the polymer/carbon hybrid structure and nitrous functional groups as the molecular state related emission centers. Supramolecular cross-linking in the aggregated state is vital for the RTP emission of the AN-CPDs by restricting the nonradiative transition of the triplet excitons. AN-CPDs of different RTP lifetimes can be applied to time-resolved multistage information encryption and multistage anticounterfeiting. This work facilitates the optical regulation and application potential of CDs and provides profound insights into the effect of the polymer/carbon hybrid structure on the properties of CDs.

9.
Small ; 16(31): e2001295, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529773

RESUMO

Exploitation and utilization of sustainable energy sources has increasingly become the common theme of global social development, which has promoted tremendous development of energy conversion devices/technologies. Owing to excellent and unique optical/electrical properties, carbon dots (CDs) have attracted extensive research interest for numerous energy conversion applications. Strong absorption, downconversion photoluminescence, electron acceptor/donor characteristics, and excellent electron conductivity endow CDs with enormous potential for applications in optoelectronic devices. Furthermore, excellent electron transfers/transport capacities and easily manipulable structural defects of CDs offer distinct advantages for electrocatalytic applications. Recent advances in CD-based energy conversion applications, including optoelectronic devices such as light-emitting diodes and solar cells, and electrocatalytic reactions including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and carbon dioxide reduction reaction, are summarized. Finally, current challenges and future prospects for CD-based energy conversion applications are proposed, highlighting the importance of controllable structural design and modifications.

10.
Angew Chem Int Ed Engl ; 59(25): 9826-9840, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056337

RESUMO

The crosslink-enhanced emission effect was first proposed to explore the strong luminescence of nonconjugated polymer dots possessing only either non-emissive or weakly emissive sub-luminophores. Interesting phenomena in recent research indicate such enhancement caused by extensive crosslinking appears in diverse luminescent polymers with sub-luminophores (electron-rich heteroatomic moieties) or luminophores (conjugated π domains). This enhancement can promote the emission from nonluminous to luminous, from weakly luminous to strongly luminous, and even convert the pathway of radiative transitions. The concept of the crosslink-enhanced emission effect should be updated and extended to an in-depth spatial effect, such as electron overlap and energy splitting in confined domains by effective crosslinking, more than initial immobilization. This Minireview outlines the development of the crosslink-enhanced emission effect from the perspective of the detailed classification, inherent mechanism and applicable systems. An outlook on the further exploration and application of this theory are also proposed.

11.
J Phys Chem Lett ; 10(17): 5182-5188, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31424936

RESUMO

Carbon dots (CDs), as emerging luminescent nanomaterials, possess excellent but complex properties, bringing about extensive attention and a lot of controversy. In this Perspective, we put forward the concept of "carbonized polymer dots" and emphasize the important role of polymerization and carbonization during the formation of CDs. We explore the common characters and clarify the complicated relationship of CDs, based on the reasonable classification of graphene quantum dots, carbon quantum dots, and carbonized polymer dots. Moreover, different perspectives are provided for comprehensive analysis about the essence of CDs, including quantum dots, molecules, and polymers. The photoluminescence mechanism has been classified into molecule state, carbon core state, surface/edge state, and cross-link enhanced emission effect for further understanding of complicated phenomena.


Assuntos
Carbono/química , Polímeros/química , Pontos Quânticos/química , Luz , Luminescência , Teoria Quântica
12.
Nanoscale ; 11(11): 5072-5079, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30840014

RESUMO

The photoluminescence (PL) mechanism plays a significant role in the study of carbonized polymer dots (CPDs). The supramolecular interaction exists in most materials, which offers innate methods to regulate the optical and physical properties. However, insights into the tunable red- and blue-shifted PL peaks of CPDs by the supramolecular interaction still remain elusive. Herein, the supramolecular interaction-triggered fluorescence change of CPDs is reported by the investigation of the piezochromic behaviors. The π-conjugated system and the hydroxy group are both critical to manipulate the PL of CPDs under high pressure. The π-π stacking of the π-conjugated system was enhanced with increasing pressure, which induces the red-shifting of PL peaks, while the hydroxyl-related hydrogen bond formation eventually causes a blue-shift. In addition, their chemical stability, low toxicity, and the tunable PL properties of CPDs by supramolecular interaction under high pressure would deepen the understanding of the fluorescence mechanism of CPDs, inspiring extensive application prospects in sensing and light-emitting diodes.

13.
Chemistry ; 24(44): 11303-11308, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29904946

RESUMO

Hydrothermal/solvothermal treatments have been widely used to prepare carbonized polymer dots (CPDs) through the condensation and carbonization of small molecules and/or polymers. However, the basic scientific issues, such as the nucleation and growth process, morphology and size control, yield increase, and photoluminescence (PL) mechanism have not been well investigated. In this work, enlightened by the principle of soap-free emulsion polymerization, CPDs with ultrahigh yields (ca. 85 %) were obtained by hydrothermal addition polymerization and carbonization (HAPC) of monomers. The unprecedented initiator-induced addition polymerization was exploited to synthesize CPDs for the first time. As expected in typical emulsion polymerization processes, the developed HAPC method can produce CPDs with designed sizes by systematically regulating the HAPC parameter, uncovering an unprecedented strategy for regulating the size of CPDs. In addition, the obtained CPDs were provided with high photoluminescence quantum yields (PLQY) up to 45.58 %, while the relationship between the photoluminescence (PL) mechanism and chemical structure was investigated. The viscosity parameter was first adopted to measure the polymer property of CPDs. Moreover, the ultrahigh yield and low-cost CPDs elicited the high-performance CPDs/PVA nanocomposite (PVA=poly(vinyl alcohol)) with fluorescence and room-temperature phosphorescence dual-mode emission, demonstrating potential for advanced anti-counterfeit applications.

14.
Angew Chem Int Ed Engl ; 57(9): 2393-2398, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29356331

RESUMO

Polymer carbon dots (PCDs) are proposed as a new class of room-temperature phosphorescence (RTP) materials. The abundant energy levels in PCDs increase the probability of intersystem crossing (ISC) and their covalently crosslinked framework structures greatly suppress the nonradiative transitions. The efficient methods allow the manufacture of PCDs with unique RTP properties in air without additional metal complexation or complicated matrix composition. They thus provide a route towards the rational design of metal-free RTP materials that may be synthesized easily. Furthermore, we find that RTP is associated with a crosslink-enhanced emission (CEE) effect, which provides further routes to design improved PCDs with diverse RTP performance. Our results show the potential of PCDs as a universal route to achieve effective metal-free RTP.

15.
RSC Adv ; 8(3): 1168-1173, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35540876

RESUMO

Fluorescent berberine-based carbon dots (Ber-CDs) were prepared through a facile synthesis strategy. Ber-CDs exhibited excellent optical properties for bioimaging and retained the biofunctions of berberine, and enabled selective and safe anti-tumor performance, demonstrating their promising application potential in cancer theranostics.

16.
ACS Appl Mater Interfaces ; 10(15): 12262-12277, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29164859

RESUMO

Involvement of clear photoluminescence (PL) mechanism in specific chemical structure is at the forefront of carbon dots (CDs). Supramolecular interaction exists in plenty of materials, offering an inherent way to administrate the optical and photophysical properties, especially in terms of newly developed polymer carbon dots (PCDs). However, supramolecular-interaction-derived PL regulation is always ignored in the shadow of many kinds of PL factors, and we still have a limited understanding on the distinct chemical structure and mechanism of supramolecular effect in PCDs. Herein, several distinct photoluminescent phenomena of PCDs under aqueous and solid state are reviewed in terms of supramolecular cross-linking, with highly emphasizing the importance of supramolecular cross-link-enhanced emission (SCEE) effects, and the regulated function of supramolecular interaction's intensity and types between PCDs for special PL behaviors of PCDs. In addition, we categorize the photoluminescent phenomena in PCDs into the following aspects: supramolecular cross-link-enhanced dilute-solution-state emission, concentration-controlled multicolor emission, supramolecular regulation for quenching-resistant solid-state fluorescence, as well as supramolecular cross-link-assisted room-temperature- phosphorescence (RTP) under solid states. Furthermore, the applications of PCDs in light-emitting diodes (LED), solar cells, and anticounterfeiting and data encryption, etc., are presented, based on the distinct supramolecular cross-link-regulated photoluminescent phenomena, especially the solid-state emission. Finally, a brief outlook is given, highlighting the currently existing problems and development direction of supramolecular cross-link-regulated emission in PCDs.

17.
Adv Sci (Weinh) ; 4(12): 1700395, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29270347

RESUMO

Polymer carbon dots (PCDs) represent a new class of carbon dots (CDs) possessing sub-fluorophores and unique polymer-like structures. However, like small molecule dyes and traditional CDs, PCDs often suffer from self-quenching effect in solid state, limiting their potential applications. Moreover, it is hard to prepare PCDs that have the same chemical structure, exhibiting full-color emission under one fixed excitation wavelength by only modulating the concentration of the PCDs. Herein, self-quenching-resistant solid-state fluorescent polymer carbon dots (SSFPCDs) are prepared, which exhibit strong red SSF without any other additional solid matrices, while having a large production yield (≈89%) and a considerable quantum yield of 8.50%. When dispersed in water or solid matrices in gradient concentrations, they can exhibit yellow, green, and blue fluorescence, realizing the first SSFPCDs with the same chemical structure emitting in full-color range by changing the ratio of SSFPCDs to the solid matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA