Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 143: 189-200, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644016

RESUMO

Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature. The aim of this study was to explore the effect of inoculating Bacillus licheniformis on the degradation of organic components and the potential microbe-driven mechanism from the aspects of organic matter degradation, enzyme activity, microbial community interaction, and microbial metabolic function. The results showed that after inoculating B. licheniformis, temperature increased to 47.8°C on day 2, and the degradation of readily degraded carbohydrates (RDC) increased by 31.2%, and the bioheat production increased by 16.5%. There was an obvious enhancement of extracellular enzymes activities after inoculation, especially amylase activity, which increased by 7.68 times on day 4. The inoculated B. licheniformis colonized in composting as key genus in the start-up phase. Modular network analysis and Mantel test indicated that inoculation drove the cooperation between microbial network modules who were responsible for various organic components (RDC, lipid, protein, and lignocellulose) degradation in the start-up phase. Metabolic function prediction suggested that carbohydrate metabolisms including starch and sucrose metabolism, glycolysis / gluconeogenesis, pyruvate metabolism, etc., were improved by increasing the abundance of related functional genes after inoculation. In conclusion, inoculating B. licheniformis accelerated organic degradation by driving the cooperation between microbial network modules and enhancing microbial metabolism in the start-up phase of composting.


Assuntos
Bacillus licheniformis , Compostagem , Bacillus licheniformis/metabolismo , Compostagem/métodos , Microbiologia do Solo , Biodegradação Ambiental , Microbiota/fisiologia , Temperatura Baixa
2.
Bioresour Technol ; 399: 130617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513923

RESUMO

This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.


Assuntos
Compostos de Amônio , Compostagem , Eliminação de Resíduos , Substâncias Húmicas , Fosfatos , Carbono , Nitrogênio/química , Alimentos , Eliminação de Resíduos/métodos , Solo , Bactérias , Esqueleto/química , Esterco
3.
Artigo em Inglês | MEDLINE | ID: mdl-38289551

RESUMO

This study aimed to compare the process of maturity and humus fraction evolution as well as bacterial community dynamics in composting from different domestic organic wastes (food waste (FW), and vegetable waste (VW)) and decipher the key biotic influencing factors of humic acid formation through correlation analysis and ecological network. The results showed that organic carbon components in FW with high ratio of soluble organic carbon and hemicellulose were more easily to be degraded in composting compared to VW. After 30 days of composting, the content of HA-C generated by VW was 35.41%, higher than 29.01% of FW, and the growth rate of HA-C generated was 38.42% and 28.34%, respectively. PARAFAC analysis showed that the structure of HA generated in VW was more complex, and the proportion of humic acid-like components (C3 + C4) was 60.32%, while FW only accounted for 43.86%. However, the evolution growth rate of aromatic components in HA in FW was 26.88% in 30 days of compost, which was higher than 15.17% in VW. High-throughput sequencing indicated that Lactobacillus was the initial dominated genera in composting from different domestic wastes. Thermobifida, Thermovum, and Pusillimas as well as Aeribacillus were core bacterial genera that promoted the humification process in FW and VW, respectively. Network analysis showed that there was higher bacterial interacted connection degree and complexity in FW compared to VW. This study was of great significance for optimizing organics conversion and humification efficiency of household waste composting.

4.
Bioresour Technol ; 340: 125714, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34371333

RESUMO

Bacillus presents in most composts as core microbial taxa and is widely used as inoculant in composting. However, the role of Bacillus as phosphate-solubilizing bacteria (PSB) inoculant in composting and the response of indigenous bacterial community are unclear. This study used redundancy analysis (RDA), network analysis and structural equation model (SEM) to investigate the dynamics of phosphorus (P) fractions, bacterial community, and microbial interaction in composting with PSB (Bacillus sp. P6) inoculation. Results indicated that Bacillus inoculation increased Olsen P content, organic matter degradation, and bacterial diversity, benefiting P fractions mobilization during composting. RDA showed that pH was the main factor influencing P fractions transformation and bacterial taxa. Network analysis and SEM revealed that Bacillus indirectly improved the contribution of bacterial community on P mobilization by enhancing microbial interactions. Therefore, Bacillus with P solubilizing function may be a potential inoculant to regulate the biotic process of P transformation.


Assuntos
Bacillus , Compostagem , Bactérias , Interações Microbianas , Fosfatos/análise , Fósforo , Solo
5.
Mitochondrial DNA B Resour ; 5(3): 3013-3014, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-33458037

RESUMO

Red Asparagus Lettuce (Lactuca sativa var. asparagina L. red) is an endemic vegetable species to China. The complete chloroplast (cp) genome of it is 152,744 bp in size and comprises a pair of inverted repeat regions of 25,033 bp each, a large single-copy (LSC) region of 84,103 bp and a small single-copy (SSC) region of 18,575 bp. A total of 131 genes were annotated in the cp genome, including 86 protein-coding genes, 8 ribosomal RNA genes, and 37 transfer RNA genes. The overall GC content of the Red Asparagus Lettuce cp genome was 37.55%. Phylogenetic analysis indicated that Red Asparagus Lettuce was more phylogenetically related to L. sativa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA