Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806435

RESUMO

Long-chain polyunsaturated fatty acids (LCPUFA), essential molecules whose precursors must be dietary supplied, are highly represented in the brain contributing to numerous neuronal processes. Recent findings have demonstrated that LCPUFA are represented in lipid raft microstructures, where they favor molecular interactions of signaling complexes underlying neuronal functionality. During aging, the brain lipid composition changes affecting the lipid rafts' integrity and protein signaling, which may induce memory detriment. We investigated the effect of a n-3 LCPUFA-enriched diet on the cognitive function of 6- and 15-months-old female mice. Likewise, we explored the impact of dietary n-3 LCPUFAs on hippocampal lipid rafts, and their potential correlation with aging-induced neuroinflammation. Our results demonstrate that n-3 LCPUFA supplementation improves spatial and recognition memory and restores the expression of glutamate and estrogen receptors in the hippocampal lipid rafts of aged mice to similar profiles than young ones. Additionally, the n-3 LCPUFA-enriched diet stabilized the lipid composition of the old mice's hippocampal lipid rafts to the levels of young ones and reduced the aged-induced neuroinflammatory markers. Hence, we propose that n-3 LCPUFA supplementation leads to beneficial cognitive performance by "rejuvenating" the lipid raft microenvironment that stabilizes the integrity and interactions of memory protein players embedded in these microdomains.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados , Envelhecimento/metabolismo , Animais , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/metabolismo , Feminino , Hipocampo/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Doenças Neuroinflamatórias
2.
Neurochem Res ; 47(7): 2016-2031, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35386048

RESUMO

Chronic hyperammonemia alters membrane expression of AMPA and NMDA receptors subunits in hippocampus leading to impaired memory and learning. Increasing extracellular cGMP normalizes these alterations. However, it has not been studied whether hyperammonemia alters the function of AMPA and NMDA receptors. The aims of this work were: (1) assess if hyperammonemia alters AMPA and NMDA receptors function; (2) analyze if extracellular cGMP reverses these alterations. A multielectrode array device was used to stimulate Schäffer collaterals and record postsynaptic currents in the CA1 region in hippocampal slices from control and hyperammonemic rats and analyze different features of the excitatory postsynaptic potentials. Hyperammonemia reduces the amplitude and delays appearance of AMPA EPSPs, whereas increases amplitude, hyperpolarization, depolarization and desensitization area of the NMDA EPSPs. These alterations in AMPA and NMDA function are accentuated as the stimulation intensity increases. Adding extracellular cGMP reverses the alteration in amplitude in both, AMPA and NMDA EPSPs. In control slices extracellular cGMP decreases the AMPA and NMDA EPSPs amplitude and delays the response of neurons and the return to the resting potential at all stimulation intensities. In conclusion, hyperammonemia decreases the AMPA response, whereas increases the NMDA response and extracellular cGMP reverses these alterations.


Assuntos
Hiperamonemia , Receptores de N-Metil-D-Aspartato , Animais , GMP Cíclico/metabolismo , Hipocampo/metabolismo , Hiperamonemia/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
3.
Vitam Horm ; 118: 247-288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180929

RESUMO

Cyclic Guanosine-Monophosphate (cGMP) is implicated as second messenger in a plethora of pathways and its effects are executed mainly by cGMP-dependent protein kinases (PKG). It is involved in both peripheral (cardiovascular regulation, intestinal secretion, phototransduction, etc.) and brain (hippocampal synaptic plasticity, neuroinflammation, cognitive function, etc.) processes. Stimulation of hippocampal cGMP signaling have been proved to be beneficial in animal models of aging, Alzheimer's disease or hepatic encephalopathy, restoring different cognitive functions such as passive avoidance, object recognition or spatial memory. However, even when some inhibitors of cGMP-degrading enzymes (PDEs) are already used against peripheral pathologies, their utility as neurological treatments is still under clinical investigation. Additionally, it has been demonstrated a list of cGMP roles as not second but first messenger. The role of extracellular cGMP has been specially studied in hippocampal function and cognitive impairment in animal models and it has emerged as an important modulator of neuroinflammation-mediated cognitive alterations and hippocampal synaptic plasticity malfunction. Specifically, it has been demonstrated that extracellular cGMP decreases hippocampal IL-1ß levels restoring membrane expression of glutamate receptors in the hippocampus and cognitive function in hyperammonemic rats. The mechanisms implicated are still unclear and might involve complex interactions between hippocampal neurons, astrocytes and microglia. Membrane targets for extracellular cGMP are still poorly understood and must be addressed in future studies.


Assuntos
GMP Cíclico , Hiperamonemia , Animais , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Microglia/metabolismo , Ratos , Transdução de Sinais/fisiologia
4.
J Hepatol ; 73(3): 582-592, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30654069

RESUMO

BACKGROUND & AIMS: Chronic hyperammonemia induces neuroinflammation which mediates cognitive impairment. How hyperammonemia induces neuroinflammation remains unclear. We aimed to assess whether: chronic hyperammonemia induces peripheral inflammation, and whether this then contributes to neuroinflammation, altered neurotransmission and impaired spatial learning - before assessing whether this neuroinflammation and impairment is reversible following hyperammonemia elimination or treatment of peripheral inflammation with anti-TNF-α. METHODS: Chronic hyperammonemia was induced by feeding rats an ammonia-containing diet. Peripheral inflammation was analyzed by measuring PGE2, TNF-α, IL-6 and IL-10. We tested whether chronic anti-TNF-α treatment improves peripheral inflammation, neuroinflammation, membrane expression of glutamate receptors in the hippocampus and spatial learning. RESULTS: Hyperammonemic rats show a rapid and reversible induction of peripheral inflammation, with increased pro-inflammatory PGE2, TNF-α and IL-6, followed at around 10 days by reduced anti-inflammatory IL-10. Peripheral anti-TNF-α treatment prevents peripheral inflammation induction and the increase in IL-1b and TNF-α and microglia activation in hippocampus of the rats, which remain hyperammonemic. This is associated with prevention of the altered membrane expression of glutamate receptors and of the impairment of spatial memory assessed in the radial and Morris water mazes. CONCLUSIONS: This report unveils a new mechanism by which chronic hyperammonemia induces neurological alterations: induction of peripheral inflammation. This suggests that reducing peripheral inflammation by safe procedures would improve cognitive function in patients with minimal hepatic encephalopathy. LAY SUMMARY: This article unveils a new mechanism by which chronic hyperammonemia induces cognitive impairment in rats: chronic hyperammonemia per se induces peripheral inflammation, which mediates many of its effects on the brain, including induction of neuroinflammation, which alters neurotransmission, leading to cognitive impairment. It is also shown that reducing peripheral inflammation by treating rats with anti-TNF-α, which does not cross the blood-brain barrier, prevents hyperammonemia-induced neuroinflammation, alterations in neurotransmission and cognitive impairment.


Assuntos
Anti-Inflamatórios/administração & dosagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Hiperamonemia/complicações , Infliximab/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Disfunção Cognitiva/sangue , Modelos Animais de Doenças , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Wistar , Aprendizagem Espacial/efeitos dos fármacos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue
5.
Int J Mol Sci ; 20(15)2019 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-31382686

RESUMO

Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.


Assuntos
Envelhecimento/metabolismo , Lipídeos/genética , Microdomínios da Membrana/metabolismo , Doenças Neurodegenerativas/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Microdomínios da Membrana/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transdução de Sinais/genética
6.
FASEB J ; 33(9): 9913-9928, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162953

RESUMO

Activated microglia and increased brain IL-1ß play a main role in cognitive impairment in much pathology. We studied the role of IL-1ß in neuroinflammation-induced impairment of the following different types of learning and memory: novel object recognition (NOR), novel object location (NOL), spatial learning, reference memory (RM), and working memory (WM). All these processes are impaired in hyperammonemic rats. We assessed which of these types of learning and memory are restored by blocking the IL-1 receptor in vivo in hyperammonemic rats and the possible mechanisms involved. Blocking the IL-1 receptor reversed microglial activation in the hippocampus, perirhinal cortex, and prefrontal cortex but not in the postrhinal cortex. This was associated with the restoration of NOR and WM but not of tasks involving a spatial component (NOL and RM). This suggests that IL-1ß would be involved in neuroinflammation-induced nonspatial memory impairment, whereas spatial memory impairment would be IL-1ß-independent and would be mediated by other proinflammatory factors.-Taoro-González, L., Cabrera-Pastor, A., Sancho-Alonso, M., Arenas, Y. M., Meseguer-Estornell, F., Balzano, T., ElMlili, N., Felipo, V. Differential role of interleukin-1ß in neuroinflammation-induced impairment of spatial and nonspatial memory in hyperammonemic rats.


Assuntos
Hiperamonemia/induzido quimicamente , Inflamação/induzido quimicamente , Interleucina-1beta/metabolismo , Memória/efeitos dos fármacos , Amônia/administração & dosagem , Amônia/toxicidade , Ração Animal , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Masculino , Microglia/efeitos dos fármacos , Microglia/fisiologia , Subunidades Proteicas , Ratos , Ratos Wistar , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Acta Physiol (Oxf) ; 226(2): e13270, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30830722

RESUMO

Several million patients with liver cirrhosis suffer minimal hepatic encephalopathy (MHE), with mild cognitive and coordination impairments that reduce their quality of life and life span. Hyperammonaemia and peripheral inflammation act synergistically to induce these neurological alterations. We propose that MHE appearance is because of the changes in peripheral immune system, which are transmitted to brain, leading to neuroinflammation that alters neurotransmission leading to cognitive and motor alterations. We summarize studies showing that MHE in cirrhotic patients is associated with alterations in the immune system and that patients died with HE show neuroinflammation in cerebellum, with microglial and astrocytic activation and Purkinje cell loss. We also summarize studies in animal models of MHE on the role of peripheral inflammation in neuroinflammation induction, how neuroinflammation alters neurotransmission and how this leads to cognitive and motor alterations. These studies identify therapeutic targets and treatments that improve cognitive and motor function. Rats with MHE show neuroinflammation in hippocampus and altered NMDA and AMPA receptor membrane expression, which impairs spatial learning and memory. Neuroinflammation in cerebellum is associated with altered GABA transporters and extracellular GABA, which impair motor coordination and learning in a Y maze. These alterations are reversed by treatments that reduce peripheral inflammation (anti-TNFα, ibuprofen), neuroinflammation (sulphoraphane, p38 inhibitors), GABAergic tone (bicuculline, pregnenolone sulphate) or increase extracellular cGMP (sildenafil or cGMP). The mechanisms identified would also occur in other chronic diseases associated with inflammation, aging and some mental and neurodegenerative diseases. Treatments that improve MHE may also be beneficial to treat these pathologies.


Assuntos
Cognição/fisiologia , Encefalopatia Hepática/metabolismo , Inflamação/metabolismo , Atividade Motora/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encefalopatia Hepática/fisiopatologia , Humanos , Hiperamonemia/metabolismo
8.
Neuropharmacology ; 161: 107496, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641078

RESUMO

Trafficking of glutamate, glutamine and GABA between astrocytes and neurons is essential to maintain proper neurotransmission. Chronic hyperammonemia alters neurotransmission and cognitive function. The aims of this work were to analyze in cerebellum of rats the effects of chronic hyperammonemia on: a) extracellular glutamate, glutamine and GABA concentrations; b) membrane expression of glutamate, glutamine and GABA transporters; c) how they are modulated by extracellular cGMP. Hyperammonemic rats show increased levels of extracellular glutamate, glutamine, GABA and citrulline in cerebellum in vivo. Hyperammonemic rats show: a) increased membrane expression of the astrocytic glutamine transporter SNAT3 and reduced membrane expression of the neuronal transporter SNAT1; b) reduced membrane expression of the neuronal GABA transporter GAT1 and increased membrane expression of the astrocytic GAT3 transporter; c) reduced membrane expression of the astrocytic glutamate transporters GLAST and GLT-1 and of the neuronal transporter EAAC1. Increasing extracellular cGMP normalizes membrane expression of SNAT3, GAT3, GAT1 and GLAST and extracellular glutamate, glutamine, GABA and citrulline hyperammonemic rats. Extracellular cGMP also modulates membrane expression of most transporters in control rats, reducing membrane expression of SNAT1, GLT-1 and EAAC1 and increasing that of GAT1 and GAT3. Modulation of SNAT3, SNAT1, GLT-1 and EAAC1 by extracellular cGMP would be mediated by inhibition of glycine receptors. These data suggest that, in pathological situations such as hyperammonemia, hepatic encephalopathy or Alzheimer's disease, reduced levels of extracellular cGMP contribute to alterations in membrane expression of glutamine, glutamate and GABA transporters, in the extracellular levels of glutamine, glutamate and GABA and in neurotransmission. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Assuntos
Membrana Celular/metabolismo , Cerebelo/metabolismo , GMP Cíclico/farmacologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hiperamonemia/metabolismo , Proteínas de Transporte de Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Citrulina/metabolismo , Espaço Extracelular , Masculino , Proteínas de Transporte de Neurotransmissores/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
9.
Mol Neurobiol ; 56(6): 4428-4439, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30328550

RESUMO

Chronic hyperammonemia impairs spatial memory by altering membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus. Intracerebral administration of extracellular cGMP to hyperammonemic rats restores spatial memory and membrane expression of AMPA receptors. The underlying molecular mechanisms remain unknown and cannot be analyzed in vivo. The aims of the present work were to (1) assess whether extracellular cGMP reverses the alterations in membrane expression of GluA1 and GluA2 in hippocampus of hyperammonemic rats ex vivo and (2) identify the underlying mechanisms. To reach these aims, we used freshly isolated hippocampal slices from control and hyperammonemic rats and treated them ex vivo with extracellular cGMP. Extracellular cGMP normalizes membrane expression of GluA2 restoring its phosphorylation in Ser880 because it restores PKCζ activation by Thr560 auto-phosphorylation, which is a consequence of normalization by extracellular cGMP of phosphorylation and activity of p38 which was increased in hyperammonemic rats. Normalization of p38 is a consequence of normalization of membrane expression of the GluN2B subunit of NMDA receptor, mediated by a reduction in its phosphorylation in Tyr1472 due to reduction of Src activation, which was over-activated in hyperammonemic rats. Extracellular cGMP also restores membrane expression of GluA1 increasing its phosphorylation at Ser831 because it restores CaMKII membrane association and phosphorylation in Thr286. All these effects of extracellular cGMP are due to a reduction of hippocampal IL-1ß levels in hyperammonemic rats, which reduces IL-1 receptor-mediated Src over-activation. Reduction in IL-1ß levels is due to the reduction of microglia activation in hippocampus of hyperammonemic rats.


Assuntos
Membrana Celular/metabolismo , GMP Cíclico/farmacologia , Espaço Extracelular/química , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Receptores de AMPA/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Membrana Celular/efeitos dos fármacos , Interleucina-1beta/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Subunidades Proteicas/metabolismo , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
10.
J Neuroinflammation ; 15(1): 36, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422059

RESUMO

BACKGROUND: Hyperammonemic rats reproduce the cognitive alterations of patients with hepatic encephalopathy, including altered spatial memory, attributed to altered membrane expression of AMPA receptor subunits in hippocampus. Neuroinflammation mediates these cognitive alterations. We hypothesized that hyperammonemia-induced increase in IL-1ß in hippocampus would be responsible for the altered GluA1 and GluA2 membrane expression. The aims of this work were to (1) assess if increased IL-1ß levels and activation of its receptor are responsible for the changes in GluA1 and/or GluA2 membrane expression in hyperammonemia and (2) identify the mechanisms by which activation of IL-1 receptor leads to altered membrane expression of GluA1 and GluA2. METHODS: We analyzed in hippocampal slices from control and hyperammonemic rat membrane expression of AMPA receptors using the BS3 cross-linker and phosphorylation of the GluA1 and GluA2 subunits using phosphor-specific antibodies. The IL-1 receptor was blocked with IL-Ra, and the signal transduction pathways involved in modulation of membrane expression of GluA1 and GluA2 were analyzed using inhibitors of key steps. RESULTS: Hyperammonemia reduces GluA1 and increases GluA2 membrane expression and reduces phosphorylation of GluA1 at Ser831 and of GluA2 at Ser880. Hyperammonemia increases IL-1ß, enhancing activation of IL-1 receptor. This leads to activation of Src. The changes in membrane expression of GluA1 and GluA2 are reversed by blocking the IL-1 receptor with IL-1Ra or by inhibiting Src with PP2. After Src activation, the pathways for GluA2 and GluA1 diverge. Src increases phosphorylation of GluN2B at Tyr14721 and membrane expression of GluN2B in hyperammonemic rats, leading to activation of MAP kinase p38, which binds to and reduces phosphorylation at Thr560 and activity of PKCζ, resulting in reduced phosphorylation at Ser880 and enhanced membrane expression of GluA2. Increased Src activity in hyperammonemic rats also activates PKCδ which enhances phosphorylation of GluN2B at Ser1303, reducing membrane expression of CaMKII and phosphorylation at Ser831 and membrane expression of GluA1. CONCLUSIONS: This work identifies two pathways by which neuroinflammation alters glutamatergic neurotransmission in hippocampus. The steps of the pathways identified could be targets to normalize neurotransmission in hyperammonemia and other pathologies associated with increased IL-1ß by acting, for example, on p38 or PKCδ. IL-1ß alters membrane expression of GluA1 and GluA2 AMPA receptor subunits by two difrerent mechanisms in the hippocampus of hyperammonemic rats.


Assuntos
Membrana Celular/metabolismo , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Receptores de AMPA/biossíntese , Receptores Tipo I de Interleucina-1/metabolismo , Acetatos/toxicidade , Animais , Membrana Celular/efeitos dos fármacos , Expressão Gênica , Hipocampo/efeitos dos fármacos , Hiperamonemia/induzido quimicamente , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Masculino , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Ratos , Ratos Wistar , Receptores de AMPA/genética , Receptores Tipo I de Interleucina-1/antagonistas & inibidores
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 286-295, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107806

RESUMO

Hyperammonemia contributes to altered neurotransmission and cognition in patients with hepatic encephalopathy. Hyperammonemia in rats affects differently high- and low-affinity AMPA receptors (AMPARs) in cerebellum. We hypothesized that hyperammonemia would alter differently membrane expression of AMPARs GluA1 and GluA2 subunits by altering its phosphorylation. This work aims were: 1) assess if hyperammonemia alters GluA1 and GluA2 subunits membrane expression in cerebellum and 2) analyze the underlying mechanisms. Hyperammonemia reduces membrane expression of GluA2 and enhances membrane expression of GluA1 in vivo. We show that changes in GluA2 and GluA1 membrane expression in hyperammonemia would be due to enhanced NMDA receptors activation which reduces cGMP levels and phosphodiesterase 2 (PDE2) activity, resulting in increased cAMP levels. This leads to increased protein kinase A (PKA) activity which activates phospholipase C (PLC) and protein kinase C (PKC) thus increasing phosphorylation of GluA2 in Ser880, which reduces GluA2 membrane expression, and phosphorylation of GluA1 in Ser831, which increases GluA1 membrane expression. Blocking NMDA receptors or inhibiting PKA, PLC or PKC normalizes GluA2 and GluA1 phosphorylation and membrane expression in hyperammonemic rats. Altered GluA2 and GluA1 membrane expression would alter signal transduction which may contribute to cognitive and motor alterations in hyperammonemia and hepatic encephalopathy.


Assuntos
Membrana Celular/metabolismo , Hiperamonemia/genética , Receptores de AMPA/genética , Animais , Membrana Celular/patologia , Doença Crônica , Encefalopatia Hepática/genética , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Masculino , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Transdução de Sinais/genética , Transmissão Sináptica/genética
12.
Sci Rep ; 7(1): 17656, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247190

RESUMO

There is increasing evidence that extracellular cGMP modulates glutamatergic neurotransmission and some forms of learning. However, the underlying mechanisms remain unknown. We proposed the hypotheses that extracellular cGMP may regulate membrane expression of AMPA receptors. To do this extracellular cGMP should act on a membrane protein and activate signal transduction pathways modulating phosphorylation of the GluA1 and/or GluA2 subunits. It has been shown that extracellular cGMP modulates glycine receptors. The aims of this work were to assess: 1) whether extracellular cGMP modulates membrane expression of GluA1 and GluA2 subunits of AMPA receptors in cerebellum in vivo; 2) whether this is mediated by glycine receptors; 3) the role of GluA1 and GluA2 phosphorylation and 4) identify steps of the intracellular pathways involved. We show that extracellular cGMP modulates membrane expression of GluA1 and GluA2 in cerebellum in vivo and unveil the mechanisms involved. Extracellular cGMP reduced glycine receptor activation, modulating cAMP, protein kinases and phosphatases, and GluA1 and GluA2 phosphorylation, resulting in increased GluA1 and reduced GluA2 membrane expression. Extracellular cGMP therefore modulates membrane expression of AMPA receptors and glutamatergic neurotransmission. The steps identified may be therapeutic targets to improve neurotransmission and neurological function in pathological situations with abnormal glutamatergic neurotransmission.


Assuntos
Cerebelo/metabolismo , Proteínas de Membrana/metabolismo , Subunidades Proteicas/metabolismo , Células de Purkinje/fisiologia , Receptores de AMPA/metabolismo , Animais , Cerebelo/patologia , GMP Cíclico/metabolismo , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana/genética , Fosforilação , Subunidades Proteicas/genética , Ratos , Ratos Wistar , Receptores de AMPA/genética , Receptores de Glicina/metabolismo , Transdução de Sinais , Transmissão Sináptica
13.
CNS Neurosci Ther ; 23(5): 386-394, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28296282

RESUMO

AIMS: Patients with liver disease may develop hepatic encephalopathy (HE), with cognitive impairment and motor in-coordination. Rats with HE due to portacaval shunts (PCS) show motor in-coordination. We hypothesized that in PCS rats: (i) Motor in-coordination would be due to enhanced GABAergic tone in cerebellum; (ii) increased GABAergic tone would be due to neuroinflammation; (iii) increasing cGMP would reduce neuroinflammation and GABAergic tone and restore motor coordination. To assess these hypotheses, we assessed if (i) treatment with sildenafil reduces neuroinflammation; (ii) reduced neuroinflammation is associated with reduced GABAergic tone and restored motor coordination. METHODS: Rats were treated with sildenafil to increase cGMP. Microglia and astrocytes activation were analyzed by immunohistochemistry, extracellular GABA by microdialysis, and motor coordination in the beam walking. RESULTS: PCS rats show neuroinflammation in cerebellum, with microglia and astrocytes activation, increased IL-1b and TNF-a and reduced YM-1 and IL-4. Membrane expression of the GABA transporter GAT1 is reduced, while GAT3 is increased. Extracellular GABA and motor in-coordination are increased. Sildenafil treatment eliminates neuroinflammation, microglia and astrocytes activation; changes in membrane expression of GABA transporters; and restores motor coordination. CONCLUSIONS: This study supports an interplay between cGMP-neuroinflammation and GABAergic neurotransmission in impairing motor coordination in PCS rats.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cerebelo/efeitos dos fármacos , Encefalopatia Hepática/tratamento farmacológico , Destreza Motora/efeitos dos fármacos , Citrato de Sildenafila/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/fisiologia , Cerebelo/imunologia , Cerebelo/patologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Encefalopatia Hepática/patologia , Encefalopatia Hepática/fisiopatologia , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/fisiologia , Destreza Motora/fisiologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Front Mol Neurosci ; 9: 106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853420

RESUMO

Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these data, we hypothesized that in rats with HE: (1) peripheral inflammation is a main contributor to neuroinflammation; (2) neuroinflammation in hippocampus impairs spatial learning by altering AMPA and/or NMDA receptors membrane expression; (3) reducing peripheral inflammation with infliximab (anti-TNF-a) would improve spatial learning; (4) this would be associated with reduced neuroinflammation and normalization of the membrane expression of glutamate receptors. The aims of this work were to assess these hypotheses. We analyzed in rats with portacaval shunt (PCS) and control rats, treated or not with infliximab: (a) peripheral inflammation by measuring prostaglandin E2, IL10, IL-17, and IL-6; (b) neuroinflammation in hippocampus by analyzing microglial activation and the content of TNF-a and IL-1b; (c) AMPA and NMDA receptors membrane expression in hippocampus; and (d) spatial learning in the Radial and Morris water mazes. We assessed the effects of treatment with infliximab on peripheral inflammation, on neuroinflammation and AMPA and NMDA receptors membrane expression in hippocampus and on spatial learning and memory. PCS rats show increased serum prostaglandin E2, IL-17, and IL-6 and reduced IL-10 levels, indicating increased peripheral inflammation. PCS rats also show microglial activation and increased nuclear NF-kB and expression of TNF-a and IL-1b in hippocampus. This was associated with altered AMPA and NMDA receptors membrane expression in hippocampus and impaired spatial learning and memory in the radial and Morris water maze. Treatment with infliximab reduces peripheral inflammation in PCS rats, normalizing prostaglandin E2, IL-17, IL-6, and IL-10 levels in serum. Infliximab also prevents neuroinflammation, reduces microglial activation, translocates NF-kB into nucleoli and normalizes TNF-a and IL-1b content in hippocampus. This was associated with normalization of AMPA receptors membrane expression in hippocampus and of spatial learning and memory. The results suggest that peripheral inflammation contributes to spatial learning impairment in PCS rats. Treatment with anti-TNF-a could be a new therapeutic approach to improve cognitive function in patients with HE.

15.
Sci Rep ; 6: 33124, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27634333

RESUMO

It has been proposed that extracellular cGMP modulates the ability to learn a Y maze task, but the underlying mechanisms remained unknown. Here we show that extracellular cGMP, at physiological concentrations, modulates learning in the Y maze in a biphasic way by modulating the glutamate-nitric oxide-cGMP pathway in cerebellum. Extracellular cGMP reduces glycine receptors activation inducing a voltage-dependent calcium-channels-mediated increase of calcium in Purkinje neurons. This calcium increase modulates CaMKII phosphorylation in a biphasic way. When basal calcium concentration is low extracellular cGMP reduces CaMKII phosphorylation, increasing nitric oxide synthase activity, the glutamate-NO-cGMP pathway function and learning ability. When basal calcium is normal extracellular cGMP increases CaMKII phosphorylation, reducing nitric oxide synthase activity, the pathway function and learning. These data unveil new mechanisms modulating learning in the Y maze and likely other learning types which may be therapeutic targets to improve learning in pathological situations associated with altered cGMP levels.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , GMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Óxido Nítrico/metabolismo , Receptores de Glicina/metabolismo , Animais , Cálcio/metabolismo , Cerebelo/metabolismo , Aprendizagem/fisiologia , Masculino , Óxido Nítrico Sintase/metabolismo , Fosforilação/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
16.
J Neuroinflammation ; 13(1): 245, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27623772

RESUMO

BACKGROUND: Peripheral inflammation contributes to the neurological alterations in hepatic encephalopathy (HE). Neuroinflammation and altered GABAergic neurotransmission mediate cognitive and motor alterations in rats with HE. It remains unclear (a) if neuroinflammation and neurological impairment in HE are a consequence of peripheral inflammation and (b) how neuroinflammation impairs GABAergic neurotransmission. The aims were to assess in rats with HE whether reducing peripheral inflammation with anti-TNF-α (1) prevents cognitive impairment and motor in-coordination, (2) normalizes neuroinflammation and extracellular GABA in the cerebellum and also (3) advances the understanding of mechanisms linking neuroinflammation and increased extracellular GABA. METHODS: Rats with HE due to portacaval shunt (PCS) were treated with infliximab. Astrocytes and microglia activation and TNF-α and IL-1ß were analyzed by immunohistochemistry. Membrane expression of the GABA transporters GAT-3 and GAT-1 was analyzed by cross-linking with BS3. Extracellular GABA was analyzed by microdialysis. Motor coordination was tested using the beam walking and learning ability using the Y maze task. RESULTS: PCS rats show peripheral inflammation, activated astrocytes, and microglia and increased levels of TNF-α and IL-1ß. Membrane expression of GAT-3 and extracellular GABA are increased, leading to impaired motor coordination and learning ability. Infliximab reduces peripheral inflammation, microglia, and astrocyte activation and neuroinflammation and normalizes GABAergic neurotransmission, motor coordination, and learning ability. CONCLUSIONS: Neuroinflammation is associated with altered GABAergic neurotransmission and increased GAT-3 membrane expression and extracellular GABA (a); peripheral inflammation is a main contributor to the impairment of motor coordination and of the ability to learn the Y maze task in PCS rats (b); and reducing peripheral inflammation using safe procedures could be a new therapeutic approach to improve cognitive and motor function in patients with HE


Assuntos
Cerebelo/metabolismo , Encefalopatia Hepática/patologia , Inflamação/tratamento farmacológico , Infliximab/uso terapêutico , Deficiências da Aprendizagem/tratamento farmacológico , Transtornos Psicomotores/tratamento farmacológico , Ácido gama-Aminobutírico/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , GMP Cíclico/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Encefalopatia Hepática/complicações , Inflamação/etiologia , Infliximab/farmacologia , Deficiências da Aprendizagem/etiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos Psicomotores/etiologia , Ratos , Ratos Wistar
17.
Brain Behav Immun ; 57: 360-370, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27189036

RESUMO

Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1ß, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors.


Assuntos
Disfunção Cognitiva/metabolismo , GMP Cíclico/farmacologia , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Memória de Curto Prazo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Memória Espacial , Fator de Necrose Tumoral alfa/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , GMP Cíclico/administração & dosagem , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hiperamonemia/complicações , Hiperamonemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Interleucina-1beta/efeitos dos fármacos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos
18.
J Neuroinflammation ; 13(1): 83, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27090509

RESUMO

BACKGROUND: Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: (a) Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. (b) Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. (c) Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. METHODS: We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. RESULTS: Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. CONCLUSIONS: Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/biossíntese , Encefalopatia Hepática/metabolismo , Hiperamonemia/metabolismo , Microglia/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Western Blotting , Membrana Celular/metabolismo , Cerebelo , Modelos Animais de Doenças , Encefalopatia Hepática/complicações , Hiperamonemia/etiologia , Hiperamonemia/fisiopatologia , Imuno-Histoquímica , Inflamação/metabolismo , Isotiocianatos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Microdiálise , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Sulfóxidos , Ácido gama-Aminobutírico/metabolismo
19.
J Neurochem ; 137(4): 539-48, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26875688

RESUMO

The glutamate-nitric oxide (NO)-cGMP pathway modulates some forms of learning. How glycine modulates this pathway is unclear. Glycine could modulate the pathway biphasically, enhancing its function through NMDA receptor activation or reducing it through glycine receptor activation. Chronic hyperammonemia impairs the glutamate-NO-cGMP pathway in the cerebellum and induces cognitive impairment. The possible alterations in hyperammonemia of glycinergic neurotransmission and of glutamate-NO-cGMP pathway modulation by glycine remain unknown. The aims were to assess, by in vivo microdialysis in cerebellum: (i) the effects of different glycine concentrations, administered through the microdialysis probe, on the glutamate-NO-cGMP pathway function; (ii) the effects of tonic glycine receptors activation on the pathway function, by blocking them with strychnine; (iii) whether hyperammonemia alters the pathway modulation by glycine; (iv) and whether hyperammonemia alters extracellular glycine concentration and/or glycine receptor membrane expression. In control rats, low glycine levels reduce the pathway function, likely by activating glycine receptors, while 20 µM glycine enhances the pathway function, likely by enhancing NMDA receptor activation. In hyperammonemic rats, glycine did not reduce the pathway function, but enhanced it when administered at 1-20 µM. Hyperammonemia reduces extracellular glycine concentration by approximately 50% and glycine receptor membrane expression. However, tonic glycine receptor activation seems to be enhanced in hyperammonemic rats, as indicated by the larger increase in extracellular cGMP induced by strychnine. These data show that glycine modulates the glutamate-NO-cGMP pathway biphasically and that hyperammonemia strongly alters glycinergic neurotransmission and modulation by glycine of the glutamate-NO-cGMP pathway. These alterations may contribute to the cerebellar aspects of cognitive alterations in hyperammonemia. The findings reported in this study show that hyperammonemia alters glycinergic neurotransmission and the glutamate-NO-cGMP pathway modulation by glycine. In control rats, low glycine levels reduced the pathway function, likely by activating glycine receptors, while 20 µM glycine enhanced the pathway, likely by enhancing NMDA receptor activation. In hyperammonemic rats, glycine (administered at 1-20 µM) enhances the pathway, likely by activating NMDA receptors.


Assuntos
Cerebelo/metabolismo , GMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Hiperamonemia/metabolismo , Óxido Nítrico/metabolismo , Animais , Cerebelo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Glicina/farmacologia , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
20.
J Neuroinflammation ; 13: 41, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26883214

RESUMO

BACKGROUND: Patients with liver cirrhosis and minimal hepatic encephalopathy (MHE) show mild cognitive impairment and spatial learning dysfunction. Hyperammonemia acts synergistically with inflammation to induce cognitive impairment in MHE. Hyperammonemia-induced neuroinflammation in hippocampus could contribute to spatial learning impairment in MHE. Two main aims of this work were: (1) to assess whether chronic hyperammonemia increases inflammatory factors in the hippocampus and if this is associated with microglia and/or astrocytes activation and (2) to assess whether hyperammonemia-induced neuroinflammation in the hippocampus is associated with altered membrane expression of glutamate and GABA receptors and spatial learning impairment. There are no specific treatments for cognitive alterations in patients with MHE. A third aim was to assess whether treatment with sulforaphane enhances endogenous the anti-inflammatory system, reduces neuroinflammation in the hippocampus of hyperammonemic rats, and restores spatial learning and if normalization of receptor membrane expression is associated with learning improvement. METHODS: We analyzed the following in control and hyperammonemic rats, treated or not with sulforaphane: (1) microglia and astrocytes activation by immunohistochemistry, (2) markers of pro-inflammatory (M1) (IL-1ß, IL-6) and anti-inflammatory (M2) microglia (Arg1, YM-1) by Western blot, (3) membrane expression of GABA, AMPA, and NMDA receptors using the BS3 cross-linker, and (4) spatial learning using the radial maze. RESULTS: The results reported show that hyperammonemia induces astrocytes and microglia activation in the hippocampus, increasing pro-inflammatory cytokines IL-1ß and IL-6. This is associated with altered membrane expression of AMPA, NMDA, and GABA receptors which would be responsible for altered neurotransmission and impairment of spatial learning in the radial maze. Treatment with sulforaphane promotes microglia differentiation from pro-inflammatory M1 to anti-inflammatory M2 phenotype and reduces activation of astrocytes in hyperammonemic rats. This reduces neuroinflammation, normalizes membrane expression of glutamate and GABA receptors, and restores spatial learning in hyperammonemic rats. CONCLUSIONS: Hyperammonemia-induced neuroinflammation impairs glutamatergic and GABAergic neurotransmission by altering membrane expression of glutamate and GABA receptors, resulting in impaired spatial learning. Sulforaphane reverses all these effects. Treatment with sulforaphane could be useful to improve cognitive function in cirrhotic patients with minimal or clinical hepatic encephalopathy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalite/etiologia , Hipocampo/metabolismo , Hiperamonemia/complicações , Isotiocianatos/uso terapêutico , Deficiências da Aprendizagem , Receptores de Neurotransmissores/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/patologia , Hiperamonemia/patologia , Técnicas In Vitro , Isotiocianatos/farmacologia , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Ratos , Ratos Wistar , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA