Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(16): 24381-24389, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35147876

RESUMO

The study explored the suitability of unfractionated extracts from the seeds of the Moringa oleifera tree as a coagulant for water treatment. The coagulant was obtained by soaking crushed and sieved seeds in a low salinity aqueous solution: a simple and inexpensive alternative to conventional coagulants in settings where specialized expertise and equipment are lacking. The performance of M. oleifera-derived coagulants was quantified in terms of turbidity removal, bacteriophage clearance, concentration of residual organics, as well as meta-parameters such as floc size and fractal dimension. Treating high turbidity clay suspensions at the optimal coagulant dosage (14.7 mg(DOC)/L) and flocculation mixing conditions ([Formula: see text]= 22.4 s-1) removed > 94% of turbidity, similar to that recorded in reference tests with alum. Floc size distribution shifted to larger sizes during the first 10 min of flocculation with no change afterwards, while the floc fractal dimension, [Formula: see text], continued to increase, pointing to the gradual formation of denser ([Formula: see text]= 2.1 to 2.2), more settleable flocs. Preliminary tests with MS2 bacteriophage showed that coagulation with M. oleifera decreased the viable MS2 titre by ~ 1.3 log, which was significantly above the turbidity removal (~ 1 log). The extraction process, however, allowed a large amount of residual organics (> 78% of extracted DOC) into the treated water. Combining the coagulants with downstream filtration and adsorption, employing UV or solar disinfection, or limiting applications to non-potable reuse is suggested for mitigating the concerns related to residual DOC.


Assuntos
Moringa oleifera , Purificação da Água , Adsorção , Floculação , Moringa oleifera/química , Sementes/química , Purificação da Água/métodos
3.
J Hazard Mater ; 412: 124747, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951851

RESUMO

Dispersants reduce oil-water interfacial tension making the separation of oil-water emulsions challenging. In this study, crude oil stabilized by the dispersant, Corexit EC9500A, was emulsified in synthetic sea water using a range of Corexit/crude oil concentration ratios (up to 10% by volume). With an interfacial tension of only 8.0 mJ/m2 at 0.5 mL(Corexit)/L, approximately 50% of the crude was dispersed into droplets <10 µm. Near complete rejection of oil in crossflow separation tests was accompanied by a precipitous flux decline attributable in part to dispersant- and salinity-induced decrease in membrane's oleophobicity (4.2 mJ/m2 decrease in surface energy). Screening of electrostatic interactions prompted oil coalescence that occurred at the membrane surface but not in the bulk of the emulsion. Real-time in situ visualization by Direct Observation Through Membrane gave direct evidence of surface coalescence pointing to both its detrimental effects (spread of contiguous films) and possible advantages (removal of large droplets by crossflow shear).

4.
Colloids Surf B Biointerfaces ; 204: 111812, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34020317

RESUMO

Attachment of human adenovirus 40 (HAdV40) onto surfaces coated with three compositionally different household paints was evaluated experimentally and interpreted based on measured physicochemical properties of the paints. Polar, dispersive and electrostatic interactions between HAdV40 and the paints were predicted using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model. Quartz crystal microbalance (QCM-D) was used to quantify virus attachment to paints from 1 mM and 150 mM NaCl solutions, with the latter having the ionic strength of a typical respiratory fluid. Acrylic latex water-based, alkyd water-based, and alkyd oil-based paints were all determined to be highly hydrophobic (ΔGsws < - 48 mJ/m2). XDLVO modeling and preliminary QCM-D tests evaluated virus-paint interactions within and outside pH windows of favorable virus-paint electrostatic interactions. Hydrophobic and electrostatic interactions governed virus attachment while van der Waals interactions played a relatively minor role. In higher ionic strength solutions, the extent of virus attachment correlated with the free energy of virus-paint interfacial interaction, [Formula: see text] : more negative energies corresponded to higher values of the areal mass density of attached viruses. Hydrophobicity was the dominant factor in determining virus adhesion from high ionic strength solutions where electrostatic interactions were screened out. The hydrophobicity of paints, while desirable for minimizing moisture intrusion, also facilitates attachment of colloids such as viruses. The results call for new approaches to the materials design of indoor paints with enhanced resistance to virus adhesion. Paints so formulated should help reduce human exposure to viruses.


Assuntos
Adenovírus Humanos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Pintura , Eletricidade Estática , Propriedades de Superfície
5.
Environ Technol ; 42(17): 2690-2699, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31884889

RESUMO

In this study, reinforced hollow fibre membranes were fabricated using different molecular weights of polyvinylidene prolidone (PVP Mw: 10, 40 and 360 kDa) and different take-up speeds (1, 2, 2.6 and 3.5 m/min). Prepared reinforced hollow fibre membranes were characterized in terms of permeability; surface morphology and hydrophilicity; pore size distribution; bovine serum albumin (BSA) rejection and flux recovery ratio. Optimum permeability and BSA rejection were obtained when PVP molecular weight was 40 kDa. After PVP molecular weight determination, advancing speed was changed and it was seen that increasing advancing speed ended up with decreased membrane wall thickness; however, decreased wall thickness increased the probability of irreversible fouling.


Assuntos
Membranas Artificiais , Ultrafiltração , Polímeros , Sulfonas
6.
J Colloid Interface Sci ; 581(Pt B): 884-894, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877879

RESUMO

HYPOTHESIS: Drying-induced decrease in lip balm surface energy enhances virus adhesion due to the emergence of strong hydrophobic colloid-surface interactions. EXPERIMENTS: A protocol was developed for preparing lip balm coatings to enable physicochemical characterization and adhesion studies. Surface charge and hydrophobicity of four brands of lip balm (dry and hydrated) and human adenovirus 5 (HAdV5) were measured and used to calculate the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) energy of interactions between lip balm coatings and HAdV5 as well as four other colloids: HAdV40, MS2 and P22 bacteriophages, and SiO2. Quartz crystal microbalance with dissipation monitoring (QCM-D) tests employed SiO2 colloids, HAdV5 and hydrated lip balms. FINDINGS: Drying of lip balms results in a dramatic decrease of their surface energy (δΔGsws≥ 83.0 mJ/m2) making the surfaces highly hydrophobic. For dry lip balms, the interaction of the balm surface with all five colloids is attractive. For lip balms hydrated in 150 mM NaCl (ionic strength of human saliva), XDLVO calculations predict that hydrophilic colloids (MS2, P22, SiO2) may attach into shallow secondary minima. Due to the relative hydrophobicity of human adenoviruses, primary maxima in XDLVO profiles are low or non-existent making irreversible deposition into primary energy minima possible. Preliminary QCM-D tests with SiO2 colloids and HAdV5 confirm deposition on hydrated lip balms.


Assuntos
Dióxido de Silício , Ligação Viral , Coloides , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lábio , Propriedades de Superfície
7.
Biotechnol Prog ; 37(1): e3080, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32985140

RESUMO

A simple model is developed to describe the instantaneous (rv ) and cumulative (Rv ) recovery of viruses from water during sample concentration by tangential flow filtration in the regime of constant water recovery, r. A figure of merit, M = rv r, is proposed as an aggregate performance metric that captures both the efficiency of virus recovery and the speed of sample concentration. We derive an expression for virus concentration in the sample as a function of filtration time with the rate-normalized virus loss, η=1-rvr , as a parameter. A practically relevant case is considered when the rate of virus loss is proportional to the permeation-driven mass flux of viruses to the membrane: dmaddt∼QpCf≫QpCp . In this scenario, the instantaneous recovery is constant, the cumulative recovery is decreasing as a power function of time, Rv=1-QpV0tη , η mediates the trade-off between r and rv , and M is maximized at r=ropt=12η . The proposed model can guide the design of the sample concentration process and serve as a framework for quantification and interlaboratory comparison of experimental data on virus recovery.


Assuntos
Membranas Artificiais , Ultrafiltração/métodos , Vírus/isolamento & purificação , Poluentes da Água/isolamento & purificação , Modelos Teóricos
8.
J Colloid Interface Sci ; 560: 247-259, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31670098

RESUMO

HYPOTHESES: Oil droplet stability and electrical charge, and membrane's affinity for oil govern droplet attachment to a membrane surface. Moderate droplet-surface affinity encourages surface coalescence and removal of droplets to help maintain the membrane relatively oil-free. EXPERIMENTS: Droplet attachment onto model nanofiltration membranes was studied, in situ and in real time, using the Direct Observation Through the Membrane method. Optically transparent nanofiltration membranes were designed by forming polyelectrolyte multilayer films, with either positively or negatively charged surfaces, on Anopore ultrafilters. Crossflow across the membrane surface employed hexadecane-in-water emulsions stabilized by an anionic surfactant (sodium dodecylsulfate) in model sea water or aqueous solutions containing NaCl or MgSO4. FINDINGS: Moderate affinity between oil and the polyelectrolyte-coated surface promotes crossflow controlled coalescence to remove droplets larger than a critical size, ddropcrit, in the crossflow shear. The torque balance on a sessile oil droplet in a linear shear field overpredicted ddropcrit pointing to a need for more accurate estimates of lift and drag forces on a droplet. In the presence of divalent cations, lower electrostatic repulsion between droplets facilitated droplet-droplet adhesion and led to rapid coalescence that resulted in membrane fouling. The most significant fouling appeared in tests with positively charged and less oleophobic coatings.

9.
Water Res ; 156: 347-365, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30928529

RESUMO

The large volumes of oily wastewater generated by various industries, such as oil and gas, food and beverage, and metal processing, need to be de-oiled prior to being discharged into the environment. Compared to conventional technologies such as dissolved air flotation (DAF), coagulation or solvent extraction, membrane filtration can treat oily wastewater of a much broader compositional range and still ensure high oil removals. In the present review, various aspects related to the practical implementation of membranes for the treatment of oily wastewater are summarized. First, sources and composition of oily wastewater, regulations that stipulate the extent of treatment needed before discharge, and the conventional technologies that enable such treatment are appraised. Second, commercially available membranes, membrane modules, operation modes and hybrids are overviewed, and their economics are discussed. Third, challenges associated with membrane filtration are examined, along with means to quantify and mitigate membrane fouling. Finally, perspectives on state-of-the-art techniques to facilitate better monitoring and control of such systems are briefly discussed.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Membranas Artificiais , Óleos
10.
J Colloid Interface Sci ; 540: 155-166, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30639663

RESUMO

HYPOTHESES: By selecting constituent polyelectrolytes and controlling conditions of their deposition, the resulting polyelectrolyte multilayers can be designed as surface coatings with controlled adhesive properties with respect to viruses. Charge and hydrophilicity of the polyelectrolyte multilayers govern virus adhesion. EXPERIMENTS: Four surfaces of different charges and hydrophobicities were designed using a layer-by-layer assembly of poly(styrene-4-sulfonate) and poly(dimethyl diallyl ammonium chloride). Contact angle measurements gave an estimate of MS2 hydrophilicity in terms of free energy of interfacial interaction in water. Experimental results on MS2 adhesion obtained using quartz crystal microbalance with dissipation monitoring were compared with predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. FINDINGS: MS2 deposition onto polyelectrolyte multilayers occurred in two phases: an early phase defined by virus-surface interactions and a later phase with virus-virus interactions controlling deposition kinetics. Principal component analysis showed that the deposition rates in the two phases were independent one of another and that each was correlated to the depth of the secondary minimum of the corresponding XDLVO energy profile. Hydrophobic and electrostatic interactions governed the deposition process: short range hydrophilic repulsion prevented deposition into the primary minimum while electrostatic interactions defined the dependence of the deposition kinetics on the ionic strength. Different surfaces showed distinct kinetics of and capacities for MS2 deposition pointing to the potential of polyelectrolyte multilayers as easy-to-apply coatings for regulating virus adsorption, inactivating viruses via the virucidal action of cationic polyelectrolytes and reducing human exposure to viruses.


Assuntos
Levivirus/química , Polieletrólitos/química , Adsorção , Cloreto de Amônio/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Levivirus/isolamento & purificação , Poliestirenos/química , Técnicas de Microbalança de Cristal de Quartzo , Eletricidade Estática , Propriedades de Superfície
11.
J Virol Methods ; 256: 123-132, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29438732

RESUMO

Two virus propagation methods (in broth and on double agar overlay) and three purification procedures (PEG precipitation, centrifugal diafiltration and CsCl density gradient centrifugation) were comparatively evaluated using MS2 and P22 bacteriophages as model viruses. The prepared stocks were characterized in terms of electrophoretic mobility as a function of pH, particle size distribution, surface tension components and the overall hydrophobicity of the virus, as well as the percentage of infectious and total virus recovered. The obtained data were used to rank the purification methods according to six criteria of likely practical relevance. Regardless of the purification method applied, virus propagation in broth media resulted in higher purity virus stocks as the growth on double agar overlay introduced difficult-to-remove residual agar. CsCl density gradient centrifugation gave the highest quality bacteriophage suspensions, recovered infectious P22 at least as efficiently as the other two purification methods and selected for intact P22 virions over damaged ones. The impurities remaining in the virus suspension after PEG precipitation and centrifugal diafiltration broadened the size distribution and interfered with electrophoretic mobility measurements. The residual impurities had a major impact on the free energy of virus-virus interfacial interaction (the quantitative measure of virus hydrophobicity/hydrophilicity) leading to an incorrect determination of P22 bacteriophage as hydrophilic. The trends in measured physicochemical properties can be rationalized by considering impurity-coated virions as permeable soft particles.


Assuntos
Vírus/química , Vírus/isolamento & purificação , Bacteriófagos/química , Bacteriófagos/isolamento & purificação , Centrifugação com Gradiente de Concentração/métodos , Eletroforese , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
12.
Water Res ; 111: 338-345, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28107747

RESUMO

This study assesses diversity of DNA viruses in the effluents of two membrane bioreactor (MBR) wastewater treatment plants (WWTPs): an MBR in the United States and an MBR in France. Viral diversity of these effluents is compared to that of a conventional activated sludge WWTP in the U.S. Diversity analysis indicates Herpesvirales to be the most abundant order of potentially pathogenic human DNA viruses in wastewater treated effluent in all utilities. Other potentially pathogenic human viruses detected include Adenoviridae, Parvoviridae, and Polyomaviridae. Bacteriophage order Caudovirales comprises the majority of DNA virus sequences in the effluent of all utilities. The choice of treatment process (MBR versus activated sludge reactor) utilized had no impact on effluent DNA viral diversity. In contrast, the type of disinfection applied had an impact on the viral diversity present in the effluent.


Assuntos
Reatores Biológicos/virologia , Eliminação de Resíduos Líquidos , Cidades , Vírus de DNA , Humanos , Membranas Artificiais , Esgotos/virologia
13.
Appl Environ Microbiol ; 82(16): 4982-93, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287319

RESUMO

UNLABELLED: This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rpre (PEM) = 74.8% ± 9.7%) than with CS-blocked membranes (rpre (CS) = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpost (PEM) = 99.5% ± 6.6% and rpost (CS) = 98.8% ± 7.7%) and tap water (rpost (PEM) = 89% ± 15% and rpost (CS) = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpost (CS) = 88.6% ± 4.3% and rpost (PEM) = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE: Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery of HAdV 40 was evaluated, with postelution recoveries from ultrapure water (99%), tap water (∼91%), and high-carbon-content surface water (∼84%) being demonstrated. These results are significant because of the very low adenovirus recoveries that have been reported, to date, for other methods. The recovery data were interpreted in terms of specific interactions, and the eluent composition was designed accordingly to maximize HAdV 40 recovery.


Assuntos
Adenovírus Humanos/isolamento & purificação , Água Potável/virologia , Água Doce/virologia , Ultrafiltração , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Polieletrólitos , Polímeros/metabolismo , Polifosfatos/metabolismo , Polissorbatos/metabolismo , Compostos de Sódio/metabolismo , Tensoativos/metabolismo , Ultrafiltração/instrumentação , Vírion/isolamento & purificação
14.
Water Res ; 88: 750-757, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26595096

RESUMO

Pressure relaxation and permeate backwash are two commonly used physical methods for membrane fouling mitigation in membrane bioreactor (MBR) systems. In order to assess the impact of these methods on virus removal by MBRs, experiments were conducted in a bench-scale submerged MBR treating synthetic wastewater. The membranes employed were hollow fibers with the nominal pore size of 0.45 µm. The experimental variables included durations of the filtration (tTMP>0), pressure relaxation (tTMP=0) and backwash (tTMP<0) steps. Both pressure relaxation and permeate backwash led to significant reductions in removal of human adenovirus (HAdV). For the same value of tTMP>0/tTMP=0, longer filtration/relaxation cycles (i.e. larger tTMP+tTMP=0) led to higher transmembrane pressure (TMP) but did not have a significant impact on HAdV removal. A shorter backwash (tTMP<0 = 10 min) at a higher flow rate (Q = 40 mL/min) resulted in more substantial decreases in TMP and HAdV removal than a longer backwash (tTMP<0 = 20 min) at a lower flow rate (Q = 20 mL/min) even though the backwash volume (QtTMP<0) was the same. HAdV removal returned to pre-cleaning levels within 16 h after backwash was applied. Moderate to strong correlations (R(2) = 0.63 to 0.94) were found between TMP and HAdV removal.


Assuntos
Adenovírus Humanos/isolamento & purificação , Incrustação Biológica/prevenção & controle , Reatores Biológicos , Filtração , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Membranas Artificiais , Pressão
15.
Langmuir ; 31(43): 11790-9, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26442835

RESUMO

Atom transfer radical polymerization of ionic monomers from membrane surfaces yields polyelectrolyte brushes that swell in water and repel oil droplets to resist fouling during filtration of oil-in-water emulsions. However, surfactant adsorption to polyelectrolyte brushes may overcome this fouling resistance. This work examines adsorption of cationic and anionic surfactants in polyanionic brushes and the effect of these surfactants on emulsion filtration. In situ ellipsometry with films on flat surfaces shows that brushes composed of poly(3-sulfopropyl methacrylate salts) (pSPMK) swell 280% in water and do not adsorb sodium dodecyl sulfate (SDS). pSPMK-modified microfiltration membranes reject >99.9% of the oil from SDS-stabilized submicron emulsions, and the specific flux through these modified membranes is comparable to that through NF270 nanofiltration membranes. Moreover, the brush-modified membranes show no decline in flux over a 12 h filtration, whereas the flux through NF270 membranes decreases by 98.7%. In contrast, pSPMK brushes adsorb large quantities of cetyltrimethylammonium bromide (CTAB), and at low chain densities the brushes collapse in the presence of this cationic surfactant. Filtration of CTAB-stabilized emulsions through pSPMK-modified membranes gives minimal oil rejection, presumably due to the brush collapse. Thus, the fouling resistance of polyelectrolyte brush-modified membranes clearly depends on the surfactant composition in a particular emulsion.

16.
Water Res ; 47(12): 3984-96, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23602037

RESUMO

Phase inversion of polymer casting mixtures filled with hierarchical functional nanostructures is proposed as a synthetic route for the design of multifunctional membranes. The study tested the hypothesis that by regulating the relative content of components representing different levels in the nanofiller hierarchy, the structure and additional functions of such membranes could be controlled separately. Exfoliated graphite nanoplatelets (xGnPs) decorated by Au nanoparticles (Au NPs), used as a model hierarchical nanofiller, were added to the casting mixture of polysulfone, N-Methyl-2-pyrrolidone and polyethylene glycol prior to forming the membrane by phase inversion. The resulting porous asymmetric nanocomposites were shown to be permselective and catalytically active ultrafiltration membranes that were more resistant to compaction, more permeable than xGnP-free membranes and at least as selective. By designing membrane compositions with different relative amounts of Au-decorated xGnPs and Au-free xGnPs, the structure (controlled by the loading of xGnPs) and catalytic activity (controlled by the loading of Au NPs) could be controlled largely independently.


Assuntos
Grafite/química , Membranas Artificiais , Nanocompostos/química , Polímeros/química , Purificação da Água , Dextranos/química , Meio Ambiente , Ouro/química , Peso Molecular , Nanocompostos/ultraestrutura , Nitrofenóis/química , Permeabilidade , Sulfonas/química , Resistência à Tração
17.
Water Res ; 44(2): 505-20, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19945136

RESUMO

As the range of applications for carbon nanotubes (CNTs) rapidly expands, understanding the effect of CNTs on prokaryotic and eukaryotic cell systems has become an important research priority, especially in light of recent reports of the facile dispersion of CNTs in a variety of aqueous systems including natural water. In this study, single-walled carbon nanotubes (SWCNTs) were dispersed in water using a range of natural (gum arabic, amylose, Suwannee River natural organic matter) and synthetic (polyvinyl pyrrolidone, Triton X-100) dispersing agents (dispersants) that attach to the CNT surface non-covalently via different physiosorption mechanisms. The charge and the average effective hydrodynamic diameter of suspended SWCNTs as well as the concentration of exfoliated SWCNTs in the dispersion were found to remain relatively stable over a period of 4 weeks. The cytotoxicity of suspended SWCNTs was assessed as a function of dispersant type and exposure time (up to 48 h) using general viability bioassay with Escherichia coli and using neutral red dye uptake (NDU) bioassay with WB-F344 rat liver epithelia cells. In the E. coli viability bioassays, three types of growth media with different organic loadings and salt contents were evaluated. When the dispersant itself was non-toxic, no losses of E. coli and WB-F344 viability were observed. The cell viability was affected only by SWCNTs dispersed using Triton X-100, which was cytotoxic in SWCNT-free (control) solution. The epigenetic toxicity of dispersed CNTs was evaluated using gap junction intercellular communication (GJIC) bioassay applied to WB-F344 rat liver epithelial cells. With all SWCNT suspensions except those where SWCNTs were dispersed using Triton X-100 (wherein GJIC could not be measured because the sample was cytotoxic), no inhibition of GJIC in the presence of SWCNTs was observed. These results suggest a strong dependence of the toxicity of SWCNT suspensions on the toxicity of the dispersant and point to the potential of non-covalent functionalization with non-toxic dispersants as a method for the preparation of stable aqueous suspensions of biocompatible CNTs.


Assuntos
Citotoxinas/toxicidade , Nanotubos de Carbono/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Meios de Cultura/química , Citotoxinas/análise , Citotoxinas/química , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Cinética , Fígado/efeitos dos fármacos , Nanotubos de Carbono/análise , Nanotubos de Carbono/química , Ratos , Ratos Endogâmicos F344 , Soluções/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
18.
Environ Sci Technol ; 43(14): 5488-94, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19708386

RESUMO

The combined effect of pH and calcium on the interactions of nonozonated and ozonated natural organic matter (NOM) with nanoscale TiO2 was investigated. The approach included characterization of TiO2 nanoparticles and NOM, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) modeling of NOM-TiO2 and NOM-NOM interactions, batch study on the NOM adsorption onto TiO2 surface, and bench-scale study on the treatment of NOM-containing feed waters using a hybrid process that combines ozonation and ultrafiltration with a 5 kDa ceramic (TiO2 surface) membrane. It was demonstrated that depending on pH and TiO2 loading, the adsorption of NOM species is controlled by either the availability of divalent cations or by preozonation of NOM. XDLVO surface energy analysis predicts NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short-range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, neither NOM-TiO2 nor NOM-NOM interaction controlled adsorption. Non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Adsorption data proved to be highly predictive of the permeate flux performance.


Assuntos
Cerâmica/química , Filtração/métodos , Nanoestruturas , Ozônio/química , Titânio/química , Purificação da Água , Água/química , Cálcio/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/instrumentação , Purificação da Água/métodos
19.
J Colloid Interface Sci ; 328(2): 464-9, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18848335

RESUMO

A method based on a simple linear regression fitting was proposed and used to determine the type, the chronological sequence, and the relative importance of individual fouling mechanisms in experiments on the dead-end filtration of colloidal suspensions with membranes ranging from loose ultrafiltration (UF) to nanofiltration (NF) to non-porous reverse osmosis (RO). For all membranes, flux decline was consistent with one or more pore blocking mechanisms during the earlier stages and with the cake filtration mechanism during the later stages of filtration. For ultrafiltration membranes, pore blocking was identified as the largest contributor to the observed flux decline. The chronological sequence of blocking mechanisms was interpreted to depend on the size distribution and surface density of membrane pores. For salt-rejecting membranes, the flux decline during the earlier stages of filtration was attributed to either intermediate blocking of relatively more permeable areas of the membrane skin, or to the cake filtration in its early transient stages, or a combination of these two mechanisms. The findings emphasize the practical importance of the clear identification of, and differentiation between mechanisms of pore blocking and cake formation as determining the potential for the irreversible fouling of membranes and the efficiency of membrane cleaning.

20.
Anal Bioanal Chem ; 388(1): 65-72, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17205260

RESUMO

Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), zeta-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.


Assuntos
Fator XII/química , Poliestirenos/química , Adsorção , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA