Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069426

RESUMO

Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.


Assuntos
Epilepsia Reflexa , Criança , Animais , Humanos , Camundongos , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Etilnitrosoureia/toxicidade , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças
2.
Int J Neurosci ; 132(2): 114-125, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32727246

RESUMO

OBJECTIVE: This study aimed to investigate the connection between the mutation of the Sip1 transcription factor and impaired Ca2+-signaling, which reflects changes in neurotransmission in the cerebral cortex in vitro. METHODS: We used mixed neuroglial cortical cell cultures derived from Sip1 mutant mice. The cells were loaded with a fluorescent ratiometric calcium-sensitive probe Fura-2 AM and epileptiform activity was modeled by excluding magnesium ions from the external media or adding a GABA(A) receptor antagonist, bicuculline. Intracellular calcium dynamics were recorded using fluorescence microscopy. To identify the level of gene expression, the Real-Time PCR method was used. RESULTS: It was found that cortical neurons isolated from homozygous (Sip1fl/fl) mice with the Sip1 mutation demonstrate suppressed Ca2+ signals in models of epileptiform activity in vitro. Wild-type cortical neurons are characterized by synchronous high-frequency and high-amplitude Ca2+ oscillations occurring in all neurons of the network in response to Mg2+-free medium and bicuculline. But cortical Sip1fl/fl neurons only single Ca2+ pulses or attenuated Ca2+ oscillations are recorded and only in single neurons, while most of the cell network does not respond to these stimuli. This signal deficiency of Sip1fl/fl neurons correlates with a suppressed expression level of the genes encoding the subunits of NMDA, AMPA, and KA receptors; protein kinases PKA, JNK, CaMKII; and also the transcription factor Hif1α. These negative effects were partially abolished when Sip1fl/fl neurons are grown in media with anti-inflammatory cytokine IL-10. IL-10 increases the expression of the above-mentioned genes but not to the level of expression in wild-type. At the same time, the amplitudes of Ca2+ signals increase in response to the selective agonists of NMDA, AMPA and KA receptors, and the proportion of neurons responding with Ca2+ oscillations to a Mg2+-free medium and bicuculline increases. CONCLUSION: IL-10 restores neurotransmission in neuronal networks with the Sip1 mutation by regulating the expression of genes encoding signaling proteins.


Assuntos
Cálcio , Interleucina-10/metabolismo , Animais , Bicuculina/farmacologia , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/fisiologia , Camundongos , N-Metilaspartato , Receptores de Glutamato/metabolismo , Fatores de Transcrição/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
3.
Cell Rep ; 31(13): 107834, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610135

RESUMO

The astrocytic response to injury is characterized on the cellular level, but our understanding of the molecular mechanisms controlling the cellular processes is incomplete. The astrocytic response to injury is similar to wound-healing responses in non-neural tissues that involve epithelial-to-mesenchymal transitions (EMTs) and upregulation in ZEB transcription factors. Here we show that injury-induced astrogliosis increases EMT-related genes expression, including Zeb2, and long non-coding RNAs, including Zeb2os, which facilitates ZEB2 protein translation. In mouse models of either contusive spinal cord injury or transient ischemic stroke, the conditional knockout of Zeb2 in astrocytes attenuates astrogliosis, generates larger lesions, and delays the recovery of motor function. These findings reveal ZEB2 as an important regulator of the astrocytic response to injury and suggest that astrogliosis is an EMT-like process, which provides a conceptual connection for the molecular and cellular similarities between astrogliosis and wound-healing responses in non-neural tissue.


Assuntos
Sistema Nervoso Central/lesões , Sistema Nervoso Central/fisiopatologia , Gliose/metabolismo , Recuperação de Função Fisiológica , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Sistema Nervoso Central/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação da Expressão Gênica , Gliose/genética , Gliose/patologia , AVC Isquêmico/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
4.
Cytogenet Genome Res ; 160(5): 245-254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32485717

RESUMO

Chromosomal microdeletion syndromes present with a wide spectrum of clinical phenotypes that depend on the size and gene content of the affected region. In a healthy carrier, epigenetic mechanisms may compensate for the same microdeletion, which may segregate through several generations without any clinical symptoms until the epigenetic modifications no longer function. We report 2 novel cases of Xq24 microdeletions inherited from mothers with extremely skewed X-chromosome inactivation (sXCI). The first case is a boy presenting with X-linked mental retardation, Nascimento type, due to a 168-kb Xq24 microdeletion involving 5 genes (CXorf56, UBE2A, NKRF, SEPT6, and MIR766) inherited from a healthy mother and grandmother with sXCI. In the second family, the presence of a 239-kb Xq24 microdeletion involving 3 additional genes (SLC25A43, SLC25A5-AS1, and SLC25A5) was detected in a woman with sXCI and a history of recurrent pregnancy loss with a maternal family history without reproductive wastages or products of conception. These cases provide evidence that women with an Xq24 microdeletion and sXCI may be at risk for having a child with intellectual disability or for experiencing a pregnancy loss due to the ontogenetic pleiotropy of a chromosomal microdeletion and its incomplete penetrance modified by sXCI.


Assuntos
Aborto Habitual/genética , Deleção Cromossômica , Cromossomos Humanos X/genética , Mães , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/genética , Inativação do Cromossomo X/genética , Adulto , Pré-Escolar , Epigênese Genética , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Fenótipo , Síndrome , Adulto Jovem
5.
Oxid Med Cell Longev ; 2019: 1036907, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827666

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) has a pronounced neuroprotective effect in various nervous system pathologies, including ischaemic brain damage and neurodegenerative diseases. In this work, we studied the effect of GDNF on the ultrastructure and functional activity of neuron-glial networks during acute hypoxic exposure, a key damaging factor in numerous brain pathologies. We analysed the molecular mechanisms most likely involved in the positive effects of GDNF. Hypoxia modelling was performed on day 14 of culturing primary hippocampal cells obtained from mouse embryos (E18). GDNF (1 ng/ml) was added to the culture medium 20 min before oxygen deprivation. Acute hypoxia-induced irreversible changes in the ultrastructure of neurons and astrocytes led to the loss of functional Сa2+ activity and neural network disruption. Destructive changes in the mitochondrial apparatus and its functional activity characterized by an increase in the basal oxygen consumption rate and respiratory chain complex II activity during decreased stimulated respiration intensity were observed 24 hours after hypoxic injury. At a concentration of 1 ng/ml, GDNF maintained the functional metabolic network activity in primary hippocampal cultures and preserved the structure of the synaptic apparatus and number of mature chemical synapses, confirming its neuroprotective effect. GDNF maintained the normal structure of mitochondria in neuronal outgrowth but not in the soma. Analysis of the possible GDNF mechanism revealed that RET kinase, a component of the receptor complex, and the PI3K/Akt pathway are crucial for the neuroprotective effect of GDNF. The current study also revealed the role of GDNF in the regulation of HIF-1α transcription factor expression under hypoxic conditions.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Cálcio/metabolismo , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Arch Biochem Biophys ; 654: 126-135, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30056076

RESUMO

The Sip1 mutation plays the main role in pathogenesis of the Mowat-Wilson syndrome, which is characterized by the pronounced epileptic symptoms. Cortical neurons of homozygous mice with Sip1 mutation are resistant to AMPA receptor activators. Disturbances of the excitatory signaling components are also observed on such a phenomenon of neuroplasticity as hypoxic preconditioning. In this work, the mechanisms of loss of the AMPA receptor's ability to precondition by episodes of short-term hypoxia were investigated on cortical neurons derived from the Sip1 homozygous mice. The preconditioning effect was estimated by the level of suppression of the AMPA receptors activity with hypoxia episodes. Using fluorescence microscopy, we have shown that cortical neurons from the Sip1fl/fl mice are characterized by the absence of hypoxic preconditioning effect, whereas the amplitude of Ca2+-responses to the application of the AMPA receptor agonist, 5-Fluorowillardiine, in neurons from the Sip1 mice brainstem is suppressed by brief episodes of hypoxia. The mechanism responsible for this process is hypoxia-induced desensitization of the AMPA receptors, which is absent in the cortex neurons possessing the Sip1 mutation. However, the appearance of preconditioning in these neurons can be induced by phosphoinositide-3-kinase activation with a selective activator or an anti-inflammatory cytokine interleukin-10.


Assuntos
Córtex Cerebral/fisiopatologia , Hipóxia/fisiopatologia , Interleucina-10/fisiologia , Mutação , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Receptores de AMPA/fisiologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Ativação Enzimática , Agonistas de Aminoácidos Excitatórios/farmacologia , Camundongos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pirimidinas/farmacologia , Receptores de AMPA/agonistas
7.
Neurosci Lett ; 650: 180-186, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28455101

RESUMO

Smad-interacting protein-1 (Sip1) [Zinc finger homeobox (Zfhx1b), Zeb2] is a transcription factor implicated in the genesis of Mowat-Wilson syndrome (MWS) in humans. MWS is a rare genetic autosomal dominant disease caused by a mutation in the Sip1 gene (aka Zeb2 or Zfhx1b) mapped to 2q22.3 locus. MWS affects 1 in every 50-100 newborns worldwide. It is characterized by mental retardation, small stature, typical facial abnormalities as well as disturbances in the development of the cardio-vascular and renal systems as well as some other organs. Sip1 mutations cause abnormal neurogenesis in the brain during development as well as susceptibility to epileptic seizures. In the current study we investigated the role of the Sip1 gene in the activity of NMDA-, AMPA- and KA- receptors. We showed that a particular Sip1 mutation in the mouse causes changes in the activity of both NMDA- and AMPA- receptors in the neocortical neurons in vitro. We demonstrate that neocortical neurons that have only one copy of Sip1 (heterozygous, Sip1fI/wt), are more sensitive to both NMDA- and AMPA- receptors agonists as compared to wild type neurons (Sip1wt/wt). This is reflected in higher amplitudes of agonist induced Ca2+ signals as well as a lower half maximal effective concentration (ЕC50). In contrast, neurons from homozygous Sip1 mice (Sip1fI/fI), demonstrate higher resistance to these respective receptor agonists. This is reflected in lower amplitudes of Ca2+-responses and so a higher concentration of receptor activators is required for activation.


Assuntos
Sinalização do Cálcio/fisiologia , Córtex Cerebral/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação/fisiologia , Animais , Variações do Número de Cópias de DNA/genética , Camundongos , Camundongos Transgênicos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA