RESUMO
Identifying master epigenetic factors controlling proliferation and survival of cancer cells allows to discover new molecular targets exploitable to overcome resistance to current pharmacological regimens. In breast cancer (BC), resistance to endocrine therapy (ET) arises from aberrant Estrogen Receptor alpha (ERα) signaling caused by genetic and epigenetic events still mainly unknown. Targeting key upstream components of the ERα pathway provides a way to interfere with estrogen signaling in cancer cells independently from any other downstream event. By combining computational analysis of genome-wide 'drop-out' screenings with siRNA-mediated gene knock-down (kd), we identified a set of essential genes in luminal-like, ERα + BC that includes BRPF1, encoding a bromodomain-containing protein belonging to a family of epigenetic readers that act as chromatin remodelers to control gene transcription. To gather mechanistic insights into the role of BRPF1 in BC and ERα signaling, we applied chromatin and transcriptome profiling, gene ablation and targeted pharmacological inhibition coupled to cellular and functional assays. Results indicate that BRPF1 associates with ERα onto BC cell chromatin and its blockade inhibits cell cycle progression, reduces cell proliferation and mediates transcriptome changes through the modulation of chromatin accessibility. This effect is elicited by a widespread inhibition of estrogen signaling, consequent to ERα gene silencing, in antiestrogen (AE) -sensitive and -resistant BC cells and pre-clinical patient-derived models (PDOs). Characterization of the functional interplay of BRPF1 with ERα reveals a new regulator of estrogen-responsive BC cell survival and suggests that this epigenetic factor is a potential new target for treatment of these tumors.
Assuntos
Neoplasias da Mama , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Genes Essenciais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Células MCF-7 , Cromatina/metabolismo , Cromatina/genética , Epigênese Genética , Transdução de Sinais/efeitos dos fármacos , Perfilação da Expressão GênicaRESUMO
Small non-coding RNAs (sncRNAs) make up ~1% of the transcriptome; nevertheless, they play significant roles in regulating cellular processes. Given the complexity of the central nervous system, sncRNAs likely hold particular importance in the human brain. In this study, we provide sncRNA transcriptomic profiles in a range of adult and prenatal brain regions, with a focus on piRNAs, due to their underexplored expression in somatic cells and tissue-specific nature. Using the WIND workflow, which combines two detection methods, we found 1333 (731 miRNAs, 249 piRNAs, 285 snoRNAs, and 68 other sncRNAs) and 1445 unique sncRNAs (770 miRNAs, 307 piRNAs, 289 snoRNAs, and 79 other sncRNAs) in developing and adult brains, respectively. Significant variations were found upon comparison of fetal and adult brain groups, with 82 miRNAs, 17 piRNAs, and 70 snoRNAs enriched in fetal brains and 22 miRNAs, 11 piRNAs in adult brains. This dataset represents a valuable resource for exploring the sncRNA roles in brain function, their involvement in neurological diseases, and the molecular mechanisms behind brain region interactions.
Assuntos
Encéfalo , Feto , Perfilação da Expressão Gênica , Pequeno RNA não Traduzido , Humanos , Encéfalo/metabolismo , Encéfalo/embriologia , Feto/metabolismo , Pequeno RNA não Traduzido/genética , Transcriptoma , Adulto , MicroRNAs/genéticaRESUMO
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people worldwide and has significant implications for public health. Host transcriptomics profiling provides comprehensive understanding of how the virus interacts with host cells and how the host responds to the virus. COVID-19 disease alters the host transcriptome, affecting cellular pathways and key molecular functions. To contribute to the global effort to understand the virus's effect on host cell transcriptome, we have generated a dataset from nasopharyngeal swabs of 35 individuals infected with SARS-CoV-2 from the Campania region in Italy during the three outbreaks, with different clinical conditions. This dataset will help to elucidate the complex interactions among genes and can be useful in the development of effective therapeutic pathways.
Assuntos
COVID-19 , Transcriptoma , Humanos , Itália , Pandemias , SARS-CoV-2RESUMO
In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy.
Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Transcriptoma , Hormônios , Regulação Neoplásica da Expressão GênicaRESUMO
BACKGROUND: Ovarian cancer (OC) is characterized by a low response rate and high frequency of resistance development to currently available treatments. The therapeutic potential of histone methyltransferase DOT1L inhibitor in OC cells has been demonstrated, but optimal efficacy and safety of this targeted therapy approach still require improvement. We set forth to evaluate if this problem can be overcome by combinatorial targeting of this epigenetic modifier and menin, one of its functional partners in chromatin. METHODS: siRNA-mediated gene knock-down and pharmacological inhibition of menin, a key component of the MLL/SET1 complex and a fitness gene in OC cells, coupled to cell proliferation assays on a panel of high grade serous OC cell lines, including chemotherapy-sensitive and -resistant clones, were applied in order to evaluate how depletion or blockade of this enzyme influences growth and viability of OC cells. RNA sequencing was applied to identify menin target genes and pathways, and the effects of combined inhibition of menin and DOT1L on growth and transcriptome of these OC models were evaluated. RESULTS: Silencing and pharmacological inhibition of menin exert antiproliferative effects in all OC cells tested and, in PEO1 and PEO4 cells, a profound impact on transcriptome via down-regulation of cell cycle regulatory pathways, aryl hydrocarbon receptor, MYC and KRAS signalling. We demonstrated association of menin and DOT1L in OC cells and identified a subset of genes co-regulated by the two factors. Interestingly, co-treatment with DOT1L and menin pharmacological inhibitors exerts an additive effect on growth inhibition on chemotherapy-sensitive and -refractory OC cells mediated by transcriptome changes controlled by menin and DOT1L activities. CONCLUSION: These results indicate that menin functionally cooperates with DOT1L in OC cells modulating transcription of genes involved in key cellular functions including, among others, cell proliferation and survival, that are strongly affected by combined inhibition of these two epigenetic regulators, suggesting that this may represent a novel therapeutic strategy for chemotherapy-resistant OCs. TRIAL REGISTRATION: NA; The manuscript does not contain clinical trials.
RESUMO
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the presence of clones of mutated blood cells without overt blood diseases. In the last few years, it has emerged that CHIP is associated with atherosclerosis and coronary calcification and that it is an independent determinant of cardiovascular mortality. Recently, CHIP has been found to occur frequently in patients with calcific aortic valve disease (CAVD) and it is associated with a poor prognosis after valve replacement. We assessed the frequency of CHIP by DNA sequencing in the blood cells of 168 CAVD patients undergoing surgical aortic valve replacement or transcatheter aortic valve implantation and investigated the effect of CHIP on 12 months survival. To investigate the pathological process of CAVD in CHIP carriers, we compared by RNA-Seq the aortic valve transcriptome of patients with or without CHIP and non-calcific controls. Transcriptomics data were validated by immunohistochemistry on formalin-embedded aortic valve samples. We confirm that CHIP is common in CAVD patients and that its presence is associated with higher mortality following valve replacement. Additionally, we show, for the first time, that CHIP is often accompanied by a broad cellular and humoral immune response in the explanted aortic valve. Our results suggest that an excessive inflammatory response in CHIP patients may be related to the onset and/or progression of CAVD and point to B cells as possible new effectors of CHIP-induced inflammation.
Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Humanos , Valva Aórtica/cirurgia , Valva Aórtica/patologia , Transcriptoma , Hematopoiese Clonal , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/cirurgiaRESUMO
Dilated cardiomyopathy (DCM) is a complex disease affecting young adults. It is a pathological condition impairing myocardium activity that leads to heart failure and, in the most severe cases, transplantation, which is currently the only possible therapy for the disease. DCM can be attributed to many genetic determinants interacting with environmental factors, resulting in a highly variable phenotype. Due to this complexity, the early identification of causative gene mutations is an important goal to provide a genetic diagnosis, implement pre-symptomatic interventions, and predict prognosis. The advent of next-generation sequencing (NGS) has opened a new path for mutation screening, and exome sequencing provides a promising approach for identifying causal variants in known genes and novel disease-associated candidates. We analyzed the whole-exome sequencing (WES) of 15 patients affected by DCM without overloading (hypertension, valvular, or congenital heart disease) or chronic ischemic conditions. We identified 70 pathogenic or likely pathogenic variants and 1240 variants of uncertain clinical significance. Gene ontology enrichment analysis was performed to assess the potential connections between affected genes and biological or molecular function, identifying genes directly related to extracellular matrix organization, transcellular movement through the solute carrier and ATP-binding cassette transporter, and vitamin B12 metabolism. We found variants in genes implicated to a different extent in cardiac function that may represent new players in the complex genetic scenario of DCM.
RESUMO
Ovarian cancer (OC) is the fifth most common type of cancer in women and the fourth most common cause of cancer death in women. Identification of pathogenic variants in OC tissues has an important clinical significance for therapeutic and prevention purposes. This study aims to evaluate the mutational profile of a patient cohort, negative for BRCA1/2 germinal variants and Mismatch Repair defects, using next-generation sequencing (NGS) approach on DNA from formalin-fixed paraffin-embedded samples. We used a custom NGS panel, targeting 34 cancer-related genes, mainly of the BRCA and PARP pathways, and analyzed NGS data to identify somatic and germline variants in Italian patients affected by primary epithelial ovarian cancer. We analyzed 75 epithelial ovarian cancer tissues and identified 54 pathogenic variants and 56 variants of unknown significance. TP53 was characterized by the highest mutational rate, occurring in 55% of tested epithelial ovarian cancers (EOCs). Interestingly, a subset of 8 EOCs showed pathogenic variants of homologous recombination pathway, which could be sensitive to PARP-inhibitor therapies. Germline analysis of actionable genes revealed 4 patients carrier of pathogenic germline variants respectively of RAD51C (2 patients), RAD51D, and PALB2. Molecular profiling of EOCs using our custom NGS panel has enabled the detection of both somatic and germline variants, allowing the selection of patients suitable for targeted therapies, and the identification of high-risk OC families that can benefit from genetic counseling and testing.
Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/patologia , Proteína BRCA2/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína BRCA1/genética , Formaldeído , Mutação em Linhagem Germinativa/genéticaRESUMO
Immunogenic cell death (ICD) in cancer represents a functionally unique therapeutic response that can induce tumor-targeting immune responses. ICD is characterized by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which confer adjuvanticity to dying cancer cells. The spatiotemporally defined emission of DAMPs during ICD has been well described, whereas the epigenetic mechanisms that regulate ICD hallmarks have not yet been deeply elucidated. Here, we aimed to examine the involvement of miRNAs and their putative targets using well-established in vitro models of ICD. To this end, B cell lymphoma (Mino) and breast cancer (MDA-MB-231) cell lines were exposed to two different ICD inducers, the combination of retinoic acid (RA) and interferon-alpha (IFN-α) and doxorubicin, and to non ICD inducers such as gamma irradiation. Then, miRNA and mRNA profiles were studied by next generation sequencing. Co-expression analysis identified 16 miRNAs differentially modulated in cells undergoing ICD. Integrated miRNA-mRNA functional analysis revealed candidate miRNAs, mRNAs, and modulated pathways associated with Immune System Process (GO Term). Specifically, ICD induced a distinctive transcriptional signature hallmarked by regulation of antigen presentation, a crucial step for proper activation of immune system antitumor response. Interestingly, the major histocompatibility complex class I (MHC-I) pathway was upregulated whereas class II (MHC-II) was downregulated. Analysis of MHC-II associated transcripts and HLA-DR surface expression confirmed inhibition of this pathway by ICD on lymphoma cells. miR-4284 and miR-212-3p were the strongest miRNAs upregulated by ICD associated with this event and miR-212-3p overexpression was able to downregulate surface expression of HLA-DR. It is well known that MHC-II expression on tumor cells facilitates the recruitment of CD4+ T cells. However, the interaction between tumor MHC-II and inhibitory coreceptors on tumor-associated lymphocytes could provide an immunosuppressive signal that directly represses effector cytotoxic activity. In this context, MHC-II downregulation by ICD could enhance antitumor immunity. Overall, we found that the miRNA profile was significantly altered during ICD. Several miRNAs are predicted to be involved in the regulation of MHC-I and II pathways, whose implication in ICD is demonstrated herein for the first time, which could eventually modulate tumor recognition and attack by the immune system.
RESUMO
BACKGROUND: Neuroendocrine neoplasms (NENs) represent a heterogeneous class of rare tumors with increasing incidence. They are characterized by the ability to secrete peptide hormones and biogenic amines but other reliable biomarkers are lacking, making diagnosis and identification of the primary site very challenging. While in some NENs, such as the pancreatic ones, next generation sequencing technologies allowed the identification of new molecular hallmarks, our knowledge of the molecular profile of NENs from other anatomical sites is still poor. METHODS: Starting from the concept that NENs from different organs may be clinically and genetically correlated, we applied a multi-omics approach by combining multigene panel testing, CGH-array, transcriptome and miRNome profiling and computational analyses, with the aim to highlight common molecular and functional signatures of gastroenteropancreatic (GEP)-NENs and medullary thyroid carcinomas (MTCs) that could aid diagnosis, prognosis and therapy. RESULTS: By comparing genomic and transcriptional profiles, ATM-dependent signaling emerged among the most significant pathways at multiple levels, involving gene variations and miRNA-mediated regulation, thus representing a novel putative druggable pathway in these cancer types. Moreover, a set of circulating miRNAs was also selected as possible diagnostic/prognostic biomarkers useful for clinical management of NENs. CONCLUSIONS: These findings depict a complex molecular and functional landscape of NENs, shedding light on novel therapeutic targets and disease biomarkers to be exploited.
Assuntos
Carcinoma Neuroendócrino , Neoplasias Gastrointestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Carcinoma Neuroendócrino/genética , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/epidemiologia , Neoplasias Gastrointestinais/genética , Humanos , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/patologia , PrognósticoRESUMO
BACKGROUND: Targeting vulnerabilities of cancer cells by inhibiting key regulators of cell proliferation or survival represents a promising way to overcome resistance to current therapies. In breast cancer (BC), resistance to endocrine therapy results from constitutively active or aberrant estrogen receptor alpha (ERα) signaling to the genome. Targeting components of the ERα pathway in these tumors represents, therefore, a rational way toward effective new treatments. Interaction proteomics identified several proteins associated with ERα in BC cells, including epigenetic complexes controlling gene transcription comprising the scaffold protein menin and the histone methyltransferase Dot1L. METHODS: We combined chromatin immunoprecipitation, transcriptome sequencing, siRNA-mediated gene knockdown (kd), pharmacological inhibition coupled to cellular and functional assays and interaction proteomics in antiestrogen (AE)-sensitive and AE-resistant human BC cell models to: map menin and Dot1L chromatin localization, search for their common and specific target genes, measure the effects of single or combinatorial knockdown or pharmacological inhibition of these proteins on cell proliferation and survival, and characterize their nuclear interactomes. RESULTS: Dot1L and menin associate in MCF-7 cells chromatin, where they co-localize in a significant fraction of sites, resulting in co-regulation of genes involved, among others, in estrogen, p53, HIF1α and death receptor signaling, regulation of cell cycle and epithelial-to-mesenchymal transition. Specific inhibitors of the two factors synergize with each other for inhibition of cell proliferation of AE (tamoxifen or fulvestrant)-sensitive and AE-resistant BC cells. Menin and Dot1L interactomes share a sizeable fraction of their nuclear partners, the majority being known BC fitness genes. Interestingly, these include B-WICH and WINAC complexes that share BAZ1B, a bromodomain protein comprising a tyrosine-protein kinase domain playing a central role in chromatin remodeling and transcriptional regulation. BAZ1B kd caused significant inhibition of ERα expression, proliferation and transcriptome changes resulting in inhibition of estrogen, myc, mTOR, PI3K and AKT signaling and metabolic pathways in AE-sensitive and AE-resistant BC cells. CONCLUSIONS: Identification of a functional interplay between ERα, Dot1L, menin and BAZ1B and the significant effects of their co-inhibition on cell proliferation and survival in cell models of endocrine therapy-resistant BC reveal a new therapeutic vulnerability of these aggressive diseases.
Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Antagonistas de Estrogênios/uso terapêutico , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Feminino , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/farmacologia , Humanos , Células MCF-7 , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/farmacologia , Fatores de TranscriçãoRESUMO
The histone lysine methyltransferase DOT1L (DOT1-like histone lysine methyltransferase) is responsible for the epigenetic regulation of gene expression through specific methylation of lysine79 residue of histone H3 (H3K79) in actively transcribed genes. Its normal activity is crucial for embryonic development and adult tissues functions, whereas its aberrant functioning is known to contribute to leukemogenesis. DOT1L is the only lysine methyltransferase that does not contain a SET domain, which is a feature that allowed the development of selective DOT1L inhibitors that are currently investigated in Phase I clinical trials for cancer treatment. Recently, abnormal expression of this enzyme has been associated with poor survival and increased aggressiveness of several solid tumors. In this review evidences of aberrant DOT1L expression and activity in breast, ovarian, prostate, colon, and other solid tumors, and its relationships with biological and clinical behavior of the disease and response to therapies, are summarized. Current knowledge of the structural basis of DOT1L ability to regulate cell proliferation, invasion, plasticity and stemness, cell cycle progression, cell-to-cell signaling, epithelial-to-mesenchymal transition, and chemoresistance, through cooperation with several molecular partners including noncoding RNAs, is also reviewed. Finally, available options for the treatment of therapeutically challenging solid tumors by targeting DOT1L are discussed.
RESUMO
Kinship recognition between anonymous DNA samples is becoming a relevant issue in forensics, more so with the increasing number of DNA profiles in databanks. Also, NGS-based genotyping is being increasingly used in routine personal identification, to simultaneously type large numbers of markers of different kind. In the present work, we explored computationally and experimentally the performance of the ForenSeq™ DNA Signature Prep Kit in identifying the true relationship between two anonymous samples, distinguishing it from other possible relationships. We analyzed with Familias R series of 10,000 pairs with 9 different simulated relationships, corresponding to different degrees of autosomal sharing. For each pair we obtained likelihood ratios for five kinship hypotheses vs. unrelatedness, and used their ranking to identify the preferred relationship. We also typed 21 subjects from two pedigrees, representing from parent-child to 4th cousins relationships. As expected, the power for identifying the true relationship decays in the order of autosomal sharing. Parent-child and full siblings can be robustly identified against other relationships. For half-siblings the chance of reaching a significant conclusion is already small. For more distant relationships the proportion of cases correctly and significantly identified is 10% or less. Bidirectional errors in kinship attribution include the suggestion of relatedness when this does not exist (10-50%), and the suggestion of independence in pairs of individuals more than 4 generations apart (25-60%). The real cases revealed a relevant effect of genotype miscalling at some loci, which could only be partly avoided by modulating the analysis parameters. In conclusion, with the exception of first degree relatives, the kit can be useful to inform additional investigations, but does not usually provide probatory results.
Assuntos
Impressões Digitais de DNA , Repetições de Microssatélites , Impressões Digitais de DNA/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Linhagem , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Integrins are cell-extracellular matrix adhesion molecules whose expression level undergoes quantitative changes upon neoplastic transformation and are considered functionally related to the development of cancer metastasis. We analyzed the largest mRNA-seq dataset available to determine the expression pattern of integrin family subunits in papillary thyroid carcinomas (PTC). ITGA2, 3, 6, V, and ITGB1 integrin subunits were overexpressed in PTC compared to normal thyroid tissue. The PTC histology variants "classical" and "tall cell" displayed a similar integrin expression profile with a higher level of ITGA3, ITGAV, and ITGB1, which differed from that of the "follicular" variant. Interestingly, compared to RAS mutations, BRAFV600E mutation was associated with a significantly higher expression of integrins. Some integrin subunits were associated with advanced disease stage, lymph node metastasis, extrathyroidal extension, and high-risk groups. Among them, ITGA3 expression displayed the highest correlation with advanced disease and was associated with a negative prognosis. In vitro scratch assay and Matrigel invasion assay in two different PTC cell lines confirmed α3ß1 role in cell motility and invasion, supporting its involvement during tumor progression. These results demonstrate the existence of a PTC-specific integrin expression signature correlated to histopathology, specific driver gene mutations, and aggressiveness of the disease.
RESUMO
Metabolic reprogramming is a well described hallmark of cancer. Oncogenic stimuli and the microenvironment shape the metabolic phenotype of cancer cells, causing pathological modifications of carbohydrate, amino acid and lipid metabolism that support the uncontrolled growth and proliferation of cancer cells. Conversely, metabolic alterations in cancer can drive changes in genetic programs affecting cell proliferation and differentiation. In recent years, the role of non-coding RNAs in metabolic reprogramming in cancer has been extensively studied. Here, we review this topic, with a focus on glucose, glutamine, and lipid metabolism and point to some evidence that metabolic alterations occurring in cancer can drive changes in non-coding RNA expression, thus adding an additional level of complexity in the relationship between metabolism and genetic programs in cancer cells.
RESUMO
BACKGROUND: Next-Generation-Sequencing (NGS) enables detection of microorganisms present in biological and other matrices of various origin and nature, allowing not only the identification of known phyla and strains but also the discovery of novel ones. The large amount of metagenomic shotgun data produced by NGS require comprehensive and user-friendly pipelines for data analysis, that speed up the bioinformatics steps, relieving the users from the need to manually perform complex and time-consuming tasks. RESULTS: We describe here HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities), an exhaustive pipeline for metagenomics data analysis, comprising three independent analytical modules designed for an inclusive analysis of large NGS datasets. CONCLUSIONS: HOME-BIO is a powerful and easy-to-use tool that can be run also by users with limited computational expertise. It allows in-depth analyses by removing low-complexity/ problematic reads, integrating the analytical steps that lead to a comprehensive taxonomy profile of each sample by querying different source databases, and it is customizable according to specific users' needs.
Assuntos
Análise de Dados , Metagenômica , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , SoftwareRESUMO
Current bioinformatics workflows for PIWI-interacting RNA (piRNA) analysis focus primarily on germline-derived piRNAs and piRNA-clusters. Frequently, they suffer from outdated piRNA databases, questionable quantification methods, and lack of reproducibility. Often, pipelines specific to miRNA analysis are used for the piRNA research in silico. Furthermore, the absence of a well-established database for piRNA annotation, as for miRNA, leads to uniformity issues between studies and generates confusion for data analysts and biologists. For these reasons, we have developed WIND ( Workflow for p IRNAs a Nd beyon D), a bioinformatics workflow that addresses the crucial issue of piRNA annotation, thereby allowing a reliable analysis of small RNA sequencing data for the identification of piRNAs and other small non-coding RNAs (sncRNAs) that in the past have been incorrectly classified as piRNAs. WIND allows the creation of a comprehensive annotation track of sncRNAs combining information available in RNAcentral, with piRNA sequences from piRNABank, the first database dedicated to piRNA annotation. WIND was built with Docker containers for reproducibility and integrates widely used bioinformatics tools for sequence alignment and quantification. In addition, it includes Bioconductor packages for exploratory data and differential expression analysis. Moreover, WIND implements a "dual" approach for the evaluation of sncRNAs expression level quantifying the aligned reads to the annotated genome and carrying out an alignment-free transcript quantification using reads mapped to the transcriptome. Therefore, a broader range of piRNAs can be annotated, improving their quantification and easing the subsequent downstream analysis. WIND performance has been tested with several small RNA-seq datasets, demonstrating how our approach can be a useful and comprehensive resource to analyse piRNAs and other classes of sncRNAs.
Assuntos
RNA Interferente Pequeno , RNA Interferente Pequeno/genética , RNA-Seq , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fluxo de TrabalhoRESUMO
Metabolic reprogramming is a hallmark of cancer, with consistent rewiring of glucose, glutamine, and mitochondrial metabolism. While these metabolic alterations are adequate to meet the metabolic needs of cell growth and proliferation, the changes in critical metabolites have also consequences for the regulation of the cell differentiation state. Cancer evolution is characterized by progression towards a poorly differentiated, stem-like phenotype, and epigenetic modulation of the chromatin structure is an important prerequisite for the maintenance of an undifferentiated state by repression of lineage-specific genes. Epigenetic modifiers depend on intermediates of cellular metabolism both as substrates and as co-factors. Therefore, the metabolic reprogramming that occurs in cancer likely plays an important role in the process of the de-differentiation characteristic of the neoplastic process. Here, we review the epigenetic consequences of metabolic reprogramming in cancer, with particular focus on the role of mitochondrial intermediates and hypoxia in the regulation of cellular de-differentiation. We also discuss therapeutic implications.