Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 68(4): 849-855, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32767384

RESUMO

Immunotherapy based on adoptive transfer of genetically engineered T- and NK-cells is an area of active ongoing research and has proven highly efficacious for patients with certain B-cell malignancies. Use of NK cells and NK cell lines as carriers of chimeric antigen receptors (CARs) appears particularly promising, as this opens an opportunity for moving the therapy from autologous to the allogeneic (universal) format. This "off-the-shelf" approach is thought to significantly reduce the price of the treatment and make it available to many more patients in need. Yet, the efficacy of CAR-NK cells in vivo presently remains low, and boosting the activity of CAR NK cells via stronger tumor homing, resistance to tumor microenvironment, as well as greater cytotoxicity may translate into improved patient outcomes. Here, we established a derivative of a human NK cell line YT overexpressing a positive regulator of cytotoxicity, VAV1. Activity of YT-VAV1 cells obtained was assayed in vitro against several cancer cell lines and primary patient-derived cancer cells. YT-VAV1 cells outperform parental YT cells in terms of cytotoxicity.


Assuntos
Imunidade Celular , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-vav/imunologia , Células CACO-2 , Células HEK293 , Humanos , Imunoterapia , Células PC-3 , Proteínas Proto-Oncogênicas c-vav/genética
2.
Eur Urol ; 77(3): 299-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31471138

RESUMO

CONTEXT: Progress achieved in the treatment of prostate cancer (PCa) with surgical, radiation, and hormonal therapies has drastically reduced mortality from this disease. Yet, patients with advanced PCa have few, if any, curative options. Recent success in treating patients with hematological malignancies of B-cell origin using T cells engineered to express chimeric antigen receptors (CARs) has inspired multiple groups worldwide to adapt this approach to the problem of late-stage PCa. OBJECTIVE: To summarize the available clinical results for CAR T-cell therapy of PCa and discuss future technological advancements in the CAR T-cell field that may help patients with metastatic PCa. EVIDENCE ACQUISITION: A literature review was conducted of clinical trial data, abstracts presented at recent oncology conferences, as well as reports highlighting critical bottlenecks of CAR T-cell therapy that became apparent from preclinical and clinical studies. EVIDENCE SYNTHESIS: Current understanding of why CAR T-cell therapy may fail, particularly in the context of solid cancers, is as follows. First, a CAR design that provides potent activity and persistence of engineered T cells in the hostile tumor microenvironment is a must. The choice of the targetable epitope(s) is critical to counteract tumor antigen escape. Preclinical and clinical evidence indicates that the efficacy of CAR T-cell therapy can be enhanced significantly in combination with other therapeutic approaches. We propose that several improvements to CAR design and patient conditioning, such as unbiased identification of novel PCa-specific CAR targets, use of next-generation (multispecific, resistant to the tumor microenvironment, and with prolonged persistence) CAR T-cell products, and combination therapies may translate into improved patient outcomes and more durable responses. CONCLUSIONS: Although significant preclinical experience of testing CAR T cells in solid cancer models has identified important technological and biological bottlenecks, information from clinical trials, particularly those focusing on the PCa, will be instrumental to the rational design of advanced CAR T therapies that will be both safe and effective in patients with advanced PCa. PATIENT SUMMARY: So far, chimeric antigen receptor (CAR) T-cell therapy has not shown significant activity in patients with metastatic prostate cancer (PCa). CAR T-cell products used for such trials represent one of the pioneering efforts to adapt this technology to the problem of metastatic PCa. In retrospect, both CAR design and cell composition appear to have been suboptimal to expect strong patient responses. Given the impressive results of CAR-based approaches observed in preclinical models of solid cancers, emerging CAR T-cell products are expected to be more successful in the clinic. Here, we discuss the challenges that need to be overcome to boost the efficacy of PCa-targeted CAR T-cell therapy and call for dialogue between clinicians and cell biologists to address these challenges.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Humanos , Masculino , Metástase Neoplásica , Neoplasias da Próstata/imunologia
3.
BMC Med Genomics ; 12(Suppl 2): 44, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871576

RESUMO

BACKGROUND: Cytotoxic activity of T- and NK-cells can be efficiently retargeted against cancer cells using chimeric antigen receptors (CARs) and rTCRs. In the context of solid cancers, use of armored CAR T- and NK cells secreting additional anti-cancer molecules such as cytokines, chemokines, antibodies, BiTEs, inverted cytokine receptors, and checkpoint inhibitors, appears particularly promising, as this may help overcome immunosuppressive tumor microenvironment, attract bystander immune cells, and boost CAR T/NK-cell persistence. Placing the expression of such molecules under the transcriptional control downstream of CAR-mediated T/NK-cell activation offers the advantage of targeted delivery, high local concentration, and reduced toxicity. Several canonic DNA sequences that are known to function as activation-inducible promoters in human T and B cells have been described to date and typically encompass the multimers of NFkB and NFAT binding sites. However, relatively little is known about the DNA sequences that may function as activation-driven switches in the context of NK cells. We set out to compare the functionality of several activation-inducible promoters in primary human T cells, as well as in NK cell lines NK-92 and YT. METHODS: Lentiviral constructs were engineered to express two fluorescent reporters: mCherry under 4xNFAT, 2xNFkB, 5xNFkB, 10xNFkB, 30xNFkB promoters, as well as two variants of the CD69 promoter, and copGFP under the strong constitutive promoter of the human EF1a gene. Pseudotyped lentiviral particles obtained using these constructs were transduced into primary human T cells and NK-92 and YT cell lines expressing a CAR specific for PSMA. The transgenic cells obtained were activated by CD3/CD28 beads (T cells) or via a CAR (CAR-NK cell lines). Promoter activity before and after activation was assayed using FACS analysis. RESULTS: In T cells, the CD69 promoter encompassing CNS1 and CNS2 regions displayed the highest signal/noise ratio. Intriguingly, in the context of CAR-YT cell line neither of the seven promoters tested displayed acceptable activation profile. In CAR-NK-92 cells, the largest fold activation (which was modest) was achieved with the 10xNFkB and 30xNFkB promoters, however its expression was clearly leaky in "resting" non-activated cells. CONCLUSIONS: Unlike in T cells, the robust activation-driven inducible expression of genetic cassettes in NK cells requires unbiased genome-wide identification of promoter sequences.


Assuntos
Genes Reporter , Células Matadoras Naturais/metabolismo , Linfócitos T/metabolismo , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Linhagem Celular , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Células Matadoras Naturais/citologia , Lectinas Tipo C/genética , Lentivirus/genética , NF-kappa B/genética , Fatores de Transcrição NFATC/genética , Regiões Promotoras Genéticas , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA