Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 15(4): 373-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23502314

RESUMO

Polycomb group (PcG) proteins play important roles in repressing lineage-specific genes and maintaining the undifferentiated state of mouse embryonic stem cells (mESCs). However, how PcG proteins are recruited to their target genes is largely unknown. Here, we show that the H3K36-specific histone demethylase Kdm2b is highly expressed in mESCs and regulated by the pluripotent factors Oct4 and Sox2 directly. Depletion of Kdm2b in mESCs causes de-repression of lineage-specific genes and induces early differentiation. The function of Kdm2b depends on its CxxC-ZF domain, which mediates its genome-wide binding to CpG islands (CGIs). Kdm2b interacts with the core components of polycomb repressive complex 1 (PRC1) and recruits the complex to the CGIs of early lineage-specific genes. Thus, our study not only reveals an Oct4-Sox2-Kdm2b-PRC1-CGI regulatory axis and its function in maintaining the undifferentiated state of mESCs, but also demonstrates a critical function of Kdm2b in recruiting PRC1 to the CGIs of lineage-specific genes to repress their expression.


Assuntos
Diferenciação Celular , Ilhas de CpG/genética , Células-Tronco Embrionárias/fisiologia , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento , Histona Desmetilases com o Domínio Jumonji/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Sequência de Bases , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Metilação de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Células-Tronco Embrionárias/citologia , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Imunofluorescência , Perfilação da Expressão Gênica , Genoma , Imunoprecipitação , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Complexo Repressor Polycomb 1/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Homologia de Sequência do Ácido Nucleico , Transfecção
2.
Mech Dev ; 129(1-4): 1-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22522080

RESUMO

Haploinsufficiency for the HMG-box transcription factor SOX2 results in abnormalities of the human ventral forebrain and its derivative structures. These defects include anophthalmia (absence of eye), microphthalmia (small eye) and hypothalamic hamartoma (HH), an overgrowth of the ventral hypothalamus. To determine how Sox2 deficiency affects the morphogenesis of the ventral diencephalon and eye, we generated a Sox2 allelic series (Sox2(IR), Sox2(LP), and Sox2(EGFP)), allowing for the generation of mice that express germline hypomorphic levels (<40%) of SOX2 protein and that faithfully recapitulate SOX2 haploinsufficient human phenotypes. We find that Sox2 hypomorphism significantly disrupts the development of the posterior hypothalamus, resulting in an ectopic protuberance of the prechordal floor, an upregulation of Shh signaling, and abnormal hypothalamic patterning. In the anterior diencephalon, both the optic stalks and optic cups (OC) of Sox2 hypomorphic (Sox2(HYP)) embryos are malformed. Furthermore, Sox2(HYP) eyes exhibit a loss of neural potential and coloboma, a common phenotype in SOX2 haploinsufficient humans that has not been described in a mouse model of SOX2 deficiency. These results establish for the first time that germline Sox2 hypomorphism disrupts the morphogenesis and patterning of the hypothalamus, optic stalk, and the early OC, establishing a model of the development of the abnormalities that are observed in SOX2 haploinsufficient humans.


Assuntos
Anormalidades do Olho/genética , Hipotálamo/anormalidades , Fatores de Transcrição SOXB1/genética , Animais , Diencéfalo/anormalidades , Diencéfalo/patologia , Modelos Animais de Doenças , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/patologia , Haploinsuficiência , Humanos , Hipotálamo/patologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Especificidade de Órgãos , Fatores de Transcrição SOXB1/deficiência
4.
Blood ; 117(25): 6912-22, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21521783

RESUMO

Chromosomal translocations of the mixed lineage leukemia (MLL) gene are a common cause of acute leukemias. The oncogenic function of MLL fusion proteins is, in part, mediated through aberrant activation of Hoxa genes and Meis1, among others. Here we demonstrate using a tamoxifen-inducible Cre-mediated loss of function mouse model that DOT1L, an H3K79 methyltransferase, is required for both initiation and maintenance of MLL-AF9-induced leukemogenesis in vitro and in vivo. Through gene expression and chromatin immunoprecipitation analysis we demonstrate that mistargeting of DOT1L, subsequent H3K79 methylation, and up-regulation of Hoxa and Meis1 genes underlie the molecular mechanism of how DOT1L contributes to MLL-AF9-mediated leukemogenesis. Our study not only provides the first in vivo evidence for the function of DOT1L in leukemia, but also reveals the molecular mechanism for DOT1L in MLL-AF9 mediated leukemia. Thus, DOT1L may serve as a potential therapeutic target for the treatment of leukemia caused by MLL translocations.


Assuntos
Leucemia/genética , Metiltransferases/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/genética , Leucemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Meis1 , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética
5.
Nature ; 466(7310): 1129-33, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20639862

RESUMO

DNA methylation is one of the best-characterized epigenetic modifications. Although the enzymes that catalyse DNA methylation have been characterized, enzymes responsible for demethylation have been elusive. A recent study indicates that the human TET1 protein could catalyse the conversion of 5-methylcytosine (5mC) of DNA to 5-hydroxymethylcytosine (5hmC), raising the possibility that DNA demethylation may be a Tet1-mediated process. Here we extend this study by demonstrating that all three mouse Tet proteins (Tet1, Tet2 and Tet3) can also catalyse a similar reaction. Tet1 has an important role in mouse embryonic stem (ES) cell maintenance through maintaining the expression of Nanog in ES cells. Downregulation of Nanog via Tet1 knockdown correlates with methylation of the Nanog promoter, supporting a role for Tet1 in regulating DNA methylation status. Furthermore, knockdown of Tet1 in pre-implantation embryos results in a bias towards trophectoderm differentiation. Thus, our studies not only uncover the enzymatic activity of the Tet proteins, but also demonstrate a role for Tet1 in ES cell maintenance and inner cell mass cell specification.


Assuntos
5-Metilcitosina/metabolismo , Massa Celular Interna do Blastocisto/metabolismo , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Proteínas Proto-Oncogênicas/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Proliferação de Células , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Proteínas Proto-Oncogênicas/genética
6.
J Biol Chem ; 285(33): 25516-21, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20554530

RESUMO

Recent studies have demonstrated that embryonic stem cell-like induced pluripotent stem (iPS) cells can be generated by enforced expression of defined transcription factors. The fact that cell fate change is accompanied by changes in epigenetic modifications prompted us to investigate whether chemicals known to modulate epigenetic regulators are capable of enhancing the efficiency of iPS cell generation. Here, we report that butyrate, a natural small fatty acid and histone deacetylase inhibitor, significantly increases the efficiency of mouse iPS cell generation using the transcription factors Oct4, Sox2, Klf4, and c-Myc. We show that butyrate not only changes the reprogramming dynamics, but also increases the ratio of iPS cell colonies to total colonies by reducing the frequency of partially reprogrammed cells and transformed cells. Detailed analysis reveals that the effect of butyrate on reprogramming appears to be mediated by c-Myc and occurs during an early stage of reprogramming. Genome-wide gene expression analysis reveals up-regulation of ES cell-enriched genes when mouse embryonic fibroblasts are treated with butyrate during reprogramming. Thus, our study identifies butyrate as a chemical factor capable of promoting iPS cell generation.


Assuntos
Butiratos/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Microscopia de Fluorescência , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
7.
J Biol Chem ; 283(46): 31601-7, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18782754

RESUMO

Increasing evidence suggests that islet cell transplantation for patients with type I diabetes holds great promise for achieving insulin independence. However, the extreme shortage of matched organ donors and the necessity for chronic immunosuppression has made it impossible for this treatment to be used for the general diabetic population. Recent success in generating insulin-secreting islet-like cells from human embryonic stem (ES) cells, in combination with the success in deriving human ES cell-like induced pluripotent stem (iPS) cells from human fibroblasts by defined factors, have raised the possibility that patient-specific insulin-secreting islet-like cells might be derived from somatic cells through cell fate reprogramming using defined factors. Here we confirm that human ES-like iPS cells can be derived from human skin cells by retroviral expression of OCT4, SOX2, c-MYC, and KLF4. Importantly, using a serum-free protocol, we successfully generated insulin-producing islet-like clusters (ILCs) from the iPS cells under feeder-free conditions. We demonstrate that, like human ES cells, skin fibroblast-derived iPS cells have the potential to be differentiated into islet-like clusters through definitive and pancreatic endoderm. The iPS-derived ILCs not only contain C-peptide-positive and glucagon-positive cells but also release C-peptide upon glucose stimulation. Thus, our study provides evidence that insulin-secreting ILCs can be generated from skin fibroblasts, raising the possibility that patient-specific iPS cells could potentially provide a treatment for diabetes in the future.


Assuntos
Células Secretoras de Insulina/metabolismo , Pele/metabolismo , Diferenciação Celular , Linhagem Celular , Fibroblastos , Humanos , Células Secretoras de Insulina/citologia , Fator 4 Semelhante a Kruppel , Pele/citologia
8.
Development ; 134(13): 2521-31, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17522155

RESUMO

Sox2 is expressed in developing foregut endoderm, with highest levels in the future esophagus and anterior stomach. By contrast, Nkx2.1 (Titf1) is expressed ventrally, in the future trachea. In humans, heterozygosity for SOX2 is associated with anopthalmia-esophageal-genital syndrome (OMIM 600992), a condition including esophageal atresia (EA) and tracheoesophageal fistula (TEF), in which the trachea and esophagus fail to separate. Mouse embryos heterozygous for the null allele, Sox2(EGFP), appear normal. However, further reductions in Sox2, using Sox2(LP) and Sox2(COND) hypomorphic alleles, result in multiple abnormalities. Approximately 60% of Sox2(EGFP/COND) embryos have EA with distal TEF in which Sox2 is undetectable by immunohistochemistry or western blot. The mutant esophagus morphologically resembles the trachea, with ectopic expression of Nkx2.1, a columnar, ciliated epithelium, and very few p63(+) basal cells. By contrast, the abnormal foregut of Nkx2.1-null embryos expresses elevated Sox2 and p63, suggesting reciprocal regulation of Sox2 and Nkx2.1 during early dorsal/ventral foregut patterning. Organ culture experiments further suggest that FGF signaling from the ventral mesenchyme regulates Sox2 expression in the endoderm. In the 40% Sox2(EGFP/COND) embryos in which Sox2 levels are approximately 18% of wild type there is no TEF. However, the esophagus is still abnormal, with luminal mucus-producing cells, fewer p63(+) cells, and ectopic expression of genes normally expressed in glandular stomach and intestine. In all hypomorphic embryos the forestomach has an abnormal phenotype, with reduced keratinization, ectopic mucus cells and columnar epithelium. These findings suggest that Sox2 plays a second role in establishing the boundary between the keratinized, squamous esophagus/forestomach and glandular hindstomach.


Assuntos
Padronização Corporal , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Atresia Esofágica/embriologia , Atresia Esofágica/genética , Atresia Esofágica/metabolismo , Atresia Esofágica/patologia , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Fatores de Transcrição SOXB1 , Fator Nuclear 1 de Tireoide , Fatores de Tempo , Fístula Traqueoesofágica/embriologia , Fístula Traqueoesofágica/genética , Fístula Traqueoesofágica/metabolismo , Fístula Traqueoesofágica/patologia , Transativadores/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Genes Dev ; 20(9): 1187-202, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16651659

RESUMO

Approximately 10% of humans with anophthalmia (absent eye) or severe microphthalmia (small eye) show haploid insufficiency due to mutations in SOX2, a SOXB1-HMG box transcription factor. However, at present, the molecular or cellular mechanisms responsible for these conditions are poorly understood. Here, we directly assessed the requirement for SOX2 during eye development by generating a gene-dosage allelic series of Sox2 mutations in the mouse. The Sox2 mutant mice display a range of eye phenotypes consistent with human syndromes and the severity of these phenotypes directly relates to the levels of SOX2 expression found in progenitor cells of the neural retina. Retinal progenitor cells with conditionally ablated Sox2 lose competence to both proliferate and terminally differentiate. In contrast, in Sox2 hypomorphic/null mice, a reduction of SOX2 expression to <40% of normal causes variable microphthalmia as a result of aberrant neural progenitor differentiation. Furthermore, we provide genetic and molecular evidence that SOX2 activity, in a concentration-dependent manner, plays a key role in the regulation of the NOTCH1 signaling pathway in retinal progenitor cells. Collectively, these results show that precise regulation of SOX2 dosage is critical for temporal and spatial regulation of retinal progenitor cell differentiation and provide a cellular and molecular model for understanding how hypomorphic levels of SOX2 cause retinal defects in humans.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Dosagem de Genes , Retina/anormalidades , Células-Tronco/fisiologia , Transativadores/fisiologia , Alelos , Animais , Anoftalmia/genética , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Knockout , Microftalmia/genética , Mutação , Neurônios/metabolismo , Neurônios/fisiologia , Receptor Notch1/metabolismo , Retina/embriologia , Retina/metabolismo , Fatores de Transcrição SOXB1 , Transdução de Sinais , Células-Tronco/metabolismo , Transativadores/biossíntese , Transativadores/genética
10.
Dev Neurosci ; 26(2-4): 148-65, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15711057

RESUMO

Multipotent neural stem cells are present throughout the development of the central nervous system (CNS), persist into adulthood in defined locations and can be derived from more primitive embryonic stem cells. We show that SOX2, an HMG box transcription factor, is expressed in multipotent neural stem cells at all stages of mouse ontogeny. We have generated transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the endogenous locus-regulatory regions of the Sox2 gene to prospectively identify neural stem/progenitor cells in vivo and in vitro. Fluorescent cells coexpress SOX2 protein, and EGFP fluorescence is detected in proliferating neural progenitor cells of the entire anterior-posterior axis of the CNS from neural plate stages to adulthood. SOX2-EGFP cells can form neurospheres that can be passaged repeatedly and can differentiate into neurons, astrocytes and oligodendrocytes. Moreover, prospective clonal analysis of SOX2-EGFP-positive cells shows that all neurospheres, whether isolated from the embryonic CNS or the adult CNS, express SOX2-EGFP. In contrast, the pattern of SOX2-EGFP expression using randomly integrated Sox2 promoter/reporter construct differs, and neurospheres are heterogeneous for EGFP expression. These studies demonstrate that SOX2 may meet the requirements of a universal neural stem cell marker and provides a means to identify cells which fulfill the basic criteria of a stem cell: self-renewal and multipotent differentiation.


Assuntos
Linhagem da Célula/genética , Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco/metabolismo , Animais , Antígenos de Diferenciação/análise , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Quimera , Células Clonais/citologia , Células Clonais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Proteínas HMGB , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXB1 , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células-Tronco/citologia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA