RESUMO
In chronic lymphocytic leukemia (CLL), the B cell receptor (BCR) plays a critical role in disease development and progression, as indicated by the therapeutic efficacy of drugs blocking BCR signaling. However, the mechanism(s) underlying BCR responsiveness are not completely defined. Selective engagement of membrane IgM or IgD on CLL cells, each coexpressed by more than 90% of cases, leads to distinct signaling events. Since both IgM and IgD carry the same antigen-binding domains, the divergent actions of the receptors are attributed to differences in immunoglobulin (Ig) structure or the outcome of signal transduction. We showed that IgM, not IgD, level and organization associated with CLL-cell birth rate and the type and consequences of BCR signaling in humans and mice. The latter IgM-driven effects were abrogated when BCR signaling was inhibited. Collectively, these studies demonstrated a critical, selective role for IgM in BCR signaling and B cell fate decisions, possibly opening new avenues for CLL therapy.
Assuntos
Linfócitos B/imunologia , Imunoglobulina D/imunologia , Imunoglobulina M/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Animais , Feminino , Humanos , Imunoglobulina D/genética , Imunoglobulina M/genética , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genéticaRESUMO
OBJECTIVE: In individuals with mitochondrial disease, respiratory viral infection can result in metabolic decompensation with mitochondrial hepatopathy. Here, we used a mouse model of liver-specific Complex IV deficiency to study hepatic allostasis during respiratory viral infection. METHODS: Mice with hepatic cytochrome c oxidase deficiency (LivCox10-/-) were infected with aerosolized influenza, A/PR/8 (PR8), and euthanized on day five after infection following three days of symptoms. This time course is marked by a peak in inflammatory cytokines and mimics the timing of a common clinical scenario in which caregivers may first attempt to manage the illness at home before seeking medical attention. Metabolic decompensation and mitochondrial hepatopathy in mice were characterized by serum hepatic testing, histology, electron microscopy, biochemistry, metabolomics, and bioenergetic profiling. RESULTS: Following influenza infection, LivCox10-/- mice displayed marked liver disease including hepatitis, enlarged mitochondria with cristae loss, and hepatic steatosis. This pathophysiology was associated with viremia. Primary hepatocytes from LivCox10-/- mice cocultured with WT Kupffer cells in the presence of PR8 showed enhanced lipid accumulation. Treatment of hepatocytes with recombinant TNFα implicated Kupffer cell-derived TNFα as a precipitant of steatosis in LivCox10-/- mice. Eliminating Kupffer cells or blocking TNFα in vivo during influenza infection mitigated the steatosis and mitochondrial morphologic changes. CONCLUSIONS: Taken together, our data shift the narrative of metabolic decompensation in mitochondrial hepatopathy beyond the bioenergetic costs of infection to include an underlying susceptibility to immune-mediated damage. Moreover, our work suggests that immune modulation during metabolic decompensation in mitochondrial disease represents a future viable treatment strategy needing further exploration.
Assuntos
Deficiência de Citocromo-c Oxidase/fisiopatologia , Fígado/metabolismo , Doenças Mitocondriais/fisiopatologia , Alostase/fisiologia , Animais , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Feminino , Hepatite/metabolismo , Hepatite/patologia , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Mitocondriais/metabolismo , Infecções por OrthomyxoviridaeRESUMO
During infection, hepatocytes must undergo a reprioritization of metabolism, termed metabolic reprogramming. Hepatic metabolic reprogramming in response to infection begins within hours of infection, suggesting a mechanism closely linked to pathogen recognition. Following injection with polyinosinic:polycytidylic acid, a mimic of viral infection, a robust hepatic innate immune response could be seen involving the TNFα pathway at 2 h. Repeated doses led to the adoption of Warburg-like metabolism in the liver as determined by in vivo metabolic imaging, expression analyses, and metabolomics. Hepatic macrophages, Kupffer cells, were able to induce Warburg-like metabolism in hepatocytes in vitro via TNFα. Eliminating macrophages in vivo or blocking TNFα in vitro or in vivo resulted in abrogation of the metabolic phenotype, establishing an immune-metabolic axis in hepatic metabolic reprogramming. Overall, we suggest that macrophages, as early sensors of pathogens, instruct hepatocytes via TNFα to undergo metabolic reprogramming to cope with challenges to homeostasis initiated by infection. This work not only addresses a key component of end-organ physiology, but also raises questions about the side effects of biologics in the treatment of inflammatory diseases. KEY MESSAGES: ⢠Hepatocytes develop Warburg-like metabolism in vivo during viral infection. ⢠Macrophage TNFα promotes expression of glycolytic enzymes in hepatocytes. ⢠Blocking this immune-metabolic axis abrogates Warburg-like metabolism in the liver. ⢠Implications for patients being treated for inflammatory diseases with biologics.
Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Hepatócitos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
T cell subsets including effector (Teff), regulatory (Treg), and memory (Tmem) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3+ Treg cell and Tmem cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir. Using genetic models to target Cpt1a specifically in T cells, we dissected the role of LC-FAO in primary, memory, and regulatory T cell responses. Here we show that the ACC2/Cpt1a axis is largely dispensable for Teff, Tmem, or Treg cell formation, and that the effects of etomoxir on T cell differentiation and function are independent of Cpt1a expression. Together our data argue that metabolic pathways other than LC-FAO fuel Tmem or Treg differentiation and suggest alternative mechanisms for the effects of etomoxir that involve mitochondrial respiration.
Assuntos
Acetil-CoA Carboxilase/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Carnitina O-Palmitoiltransferase/fisiologia , Compostos de Epóxi/farmacologia , Ácidos Graxos/metabolismo , Memória Imunológica/efeitos dos fármacos , Mitocôndrias/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Animais , Carnitina O-Palmitoiltransferase/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Feminino , Técnicas de Inativação de Genes , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Linfócitos T Reguladores/metabolismoRESUMO
Metabolic decompensation in inborn errors of metabolism (IEM) is characterized by a rapid deterioration in metabolic status leading to life-threatening biochemical perturbations (e.g. hypoglycemia, hyperammonemia, acidosis, organ failure). Infection is the major cause of metabolic decompensation in patients with IEM. We hypothesized that activation of the immune system during infection leads to further perturbations in end-organ metabolism resulting in increased morbidity. To address this, we established model systems of metabolic decompensation due to infection. Using these systems, we have described the pathologic mechanisms of metabolic decompensation as well as changes in hepatic metabolic reserve associated with infection. First and foremost, our studies have demonstrated that the liver experiences a significant local innate immune response during influenza infection that modulates hepatic metabolism. Based on these findings, we are the first to suggest that the role of the liver as a metabolic and immunologic organ is central in the pathophysiology of metabolic decompensation due to infection in IEM. The dual function of the liver as a major metabolic regulator and a lymphoid organ responsible for immunosurveillance places this organ at risk for hepatotoxicity. Mobilization of hepatic reserve and the regenerative capacity of a healthy liver compensates for this calculated risk. However, activation of the hepatic innate immune system may be deleterious in IEM. Based on this assertion, strategies aimed at modulating the innate immune response may be a viable target for intervention in the treatment of hepatic metabolic decompensation.
Assuntos
Infecções/complicações , Fígado/imunologia , Fígado/metabolismo , Erros Inatos do Metabolismo/metabolismo , Animais , Humanos , Infecções/fisiopatologia , Fígado/patologia , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/imunologia , CamundongosRESUMO
T cells undergo metabolic reprogramming with major changes in cellular energy metabolism during activation. In patients with mitochondrial disease, clinical data were marked by frequent infections and immunodeficiency, prompting us to explore the consequences of oxidative phosphorylation dysfunction in T cells. Since cytochrome c oxidase (COX) is a critical regulator of OXPHOS, we created a mouse model with isolated dysfunction in T cells by targeting a gene, COX10, that produces mitochondrial disease in humans. COX dysfunction resulted in increased apoptosis following activation in vitro and immunodeficiency in vivo. Select T cell effector subsets were particularly affected; this could be traced to their bioenergetic requirements. In summary, the findings presented herein emphasize the role of COX particularly in T cells as a metabolic checkpoint for cell fate decisions following T cell activation, with heterogeneous effects in T cell subsets. In addition, our studies highlight the utility of translational models that recapitulate human mitochondrial disease for understanding immunometabolism.
Assuntos
Alquil e Aril Transferases/imunologia , Diferenciação Celular/imunologia , Complexo IV da Cadeia de Transporte de Elétrons/imunologia , Ativação Linfocitária , Proteínas de Membrana/imunologia , Doenças Mitocondriais/imunologia , Linfócitos T/imunologia , Alquil e Aril Transferases/genética , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genéticaRESUMO
In response to infection, patients with inborn errors of metabolism may develop a functional deterioration termed metabolic decompensation. The biochemical hallmarks of this disruption of metabolic homeostasis are disease specific and may include acidosis, hyperammonemia or hypoglycemia. In a model system previously published by our group, we noted that during influenza infection, mice displayed a depression in hepatic mitochondrial enzymes involved in nitrogen metabolism. Based on these findings, we hypothesized that this normal adaptation may extend to other metabolic pathways, and as such, may impact various inborn errors of metabolism. Since the liver is a critical organ in inborn errors of metabolism, we carried out untargeted metabolomic profiling of livers using mass spectrometry in C57Bl/6 mice infected with influenza to characterize metabolic adaptation. Pathway analysis of metabolomic data revealed reductions in CoA synthesis, and long chain fatty acyl CoA and carnitine species. These metabolic adaptations coincided with a depression in hepatic long chain ß-oxidation mRNA and protein. To our surprise, the metabolic changes observed occurred in conjunction with a hepatic innate immune response, as demonstrated by transcriptional profiling and flow cytometry. By employing an immunomodulation strategy to deplete Kupffer cells, we were able to improve the expression of multiple genes involved in ß-oxidation. Based on these findings, we are the first to suggest that the role of the liver as an immunologic organ is central in the pathophysiology of hepatic metabolic decompensation in inborn errors of metabolism due to respiratory viral infection.
RESUMO
Ornithine transcarbamylase deficiency (OTCD, OMIM# 311250) is an inherited X-linked urea cycle disorder that is characterized by hyperammonemia and orotic aciduria. In this report, we describe a new animal model of OTCD caused by a spontaneous mutation in the mouse Otc gene (c.240T>A, p.K80N). This transversion in exon 3 of ornithine transcarbamylase leads to normal levels of mRNA with low levels of mature protein and is homologous to a mutation that has also been described in a single patient affected with late-onset OTCD. With higher residual enzyme activity, spf-J were found to have normal plasma ammonia and orotate. Baseline plasma amino acid profiles were consistent with mild OTCD: elevated glutamine, and lower citrulline and arginine. In contrast to WT, spf-J displayed baseline elevations in cerebral amino acids with depletion following immune challenge with polyinosinic:polycytidylic acid. Our results indicate that the mild spf-J mutation constitutes a new mouse model that is suitable for mechanistic studies of mild OTCD and the exploration of cerebral pathophysiology during acute decompensation that characterizes proximal urea cycle dysfunction in humans.
Assuntos
Aminoácidos/metabolismo , Encéfalo/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/imunologia , Doença da Deficiência de Ornitina Carbomoiltransferase/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Peso Corporal , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ornitina Carbamoiltransferase/química , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ácido Orótico/metabolismo , Fenótipo , Poli I-C/farmacologia , Estrutura Terciária de Proteína , Ratos , Análise de SobrevidaRESUMO
ASS1 is a cytosolic enzyme that plays a role in the conversion of citrulline to arginine. In human and mouse tissues, ASS1 protein is found in several components of the immune system, including the thymus and T cells. However, the role of ASS1 in these tissues remains to be defined. Considerable attention has been focused recently on the role of metabolism in T cell differentiation and function. Based on the expression of ASS1 in the immune system, we hypothesized that ASS1 deficiency would result in T cell defects. To evaluate this question, we characterized immune function in hypomorphic fold/fold mice. Analysis of splenic T cells by flow cytometry showed a marked reduction in T cell numbers with normal expression of activation surface markers. Gene therapy correction of liver ASS1 to enhance survival resulted in a partial recovery of splenic T cells for characterization. In vitro and in vivo studies demonstrated the persistence of the ASS1 enzyme defect in T cells and abnormal T cell differentiation and function. Overall, our work suggests that ASS1 plays a role in T cell function, and deficiency produces primary immune dysfunction. In addition, these data suggest that patients with ASS1 deficiency (citrullinemia type I) may have T cell dysfunction.