Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(38): 5592-5602, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37532610

RESUMO

There is a major unmet need for strategies to improve the immunogenicity and effectiveness of pandemic influenza vaccines, particularly in poor responder populations such as neonates. Recombinant protein approaches to pandemic influenza offer advantages over more traditional inactivated virus approaches, as they are free of problems such as egg adaptation or need for high level biosecurity containment for manufacture. However, a weakness of recombinant proteins is their low immunogenicity. We asked whether the use of an inulin polysaccharide adjuvant (Advax) alone or combined with a TLR9 agonist (CpG55.2) would enhance the immunogenicity and protection of a recombinant hemagglutinin vaccine against H7N9 influenza (rH7HA), including in neonatal mice. Advax adjuvant induced predominantly IgG1 responses against H7HA, whereas Advax-CpG55.2 adjuvant also induced IgG2a, IgG2b and IgG3 responses, consistent with the TLR9 agonist component inducing a Th1 bias. Advax-CpG55.2 adjuvanted rH7HA induced high serum neutralizing antibody titers in adult mice. In newborns it similarly overcame immune hypo-responsiveness and enhanced serum anti-rH7HA IgG levels in 7-day-old BALB/C and C57BL/6 mice. Immunized adult mice were protected against a lethal H7N9 virus challenge. When formulated with Advax-CpG55.2 adjuvant, greater protection was seen with rH7HA than with inactivated H7 whole virus antigen. Advax-CpG55.2 adjuvanted rH7HA represents a promising influenza vaccine platform for further development.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Animais Recém-Nascidos , Hemaglutininas , Receptor Toll-Like 9 , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Vacinas Sintéticas , Proteínas Recombinantes , Infecções por Orthomyxoviridae/prevenção & controle
2.
ACS Med Chem Lett ; 14(4): 506-513, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37077387

RESUMO

We report for the first time the antiviral activities of two iminovirs (antiviral imino-C-nucleosides) 1 and 2, structurally related to galidesivir (Immucillin A, BCX4430). An iminovir containing the 4-aminopyrrolo[2,1-f][1,2,4-triazine] nucleobase found in remdesivir exhibited submicromolar inhibition of multiple strains of influenza A and B viruses, as well as members of the Bunyavirales order. We also report the first syntheses of ProTide prodrugs of iminovir monophosphates, which unexpectedly displayed poorer viral inhibition than their parent nucleosides in vitro. An efficient synthesis of the 4-aminopyrrolo[2,1-f][1,2,4-triazine]-containing iminovir 2 was developed to enable preliminary in vivo studies, wherein it displayed significant toxicity in BALB/c mice and limited protection against influenza. Further modification of this anti-influenza iminovir will therefore be required to improve its therapeutic value.

3.
Antiviral Res ; 214: 105605, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068595

RESUMO

This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.


Assuntos
COVID-19 , Pneumonia , Humanos , Animais , Cricetinae , COVID-19/diagnóstico por imagem , SARS-CoV-2 , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Enzima de Conversão de Angiotensina 2 , Tomografia por Emissão de Pósitrons , Mesocricetus , Progressão da Doença
4.
Virology ; 580: 62-72, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780728

RESUMO

Enterovirus A71 can cause serious neurological disease in young children. Animal models for EV-A71 are needed to evaluate potential antiviral therapies. Existing models have limitations, including lack of lethality or crucial disease signs. Here we report the development of an EV-A71 model in 28-day-old mice. Virus was serially passaged until it produced consistent lethality and rear-limb paralysis. Onset of disease occurred between days 6-9 post-infection, with mortality following weight loss and neurological signs on days 9-14. In addition, a single administration of human intravenous immunoglobulin at doses of 200, 400 and 800 mg/kg at 4h post-infection was evaluated in the model. Protection from weight loss, neurological signs, and mortality (between 50 and 89%) were observed at doses of 400 mg/kg or greater. Based on these results, IVIG was selected for use as a positive control in this acute model, and suggest that IVIG is a potential therapeutic for EV-A71 infections.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doenças do Sistema Nervoso , Criança , Humanos , Camundongos , Animais , Pré-Escolar , Imunoglobulinas Intravenosas/uso terapêutico , Modelos Animais de Doenças
5.
J Virol ; 96(15): e0083322, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852353

RESUMO

Human enterovirus D68 (EV-D68) is a globally reemerging respiratory pathogen that is associated with the development of acute flaccid myelitis (AFM) in children. Currently, there are no approved vaccines or treatments for EV-D68 infection, and there is a paucity of data related to the virus and host-specific factors that predict disease severity and progression to the neurologic syndrome. EV-D68 infection of various animal models has served as an important platform for characterization and comparison of disease pathogenesis between historic and contemporary isolates. Still, there are significant gaps in our knowledge of EV-D68 pathogenesis that constrain the development and evaluation of targeted vaccines and antiviral therapies. Continued refinement and characterization of animal models that faithfully reproduce key elements of EV-D68 infection and disease is essential for ensuring public health preparedness for future EV-D68 outbreaks.


Assuntos
Viroses do Sistema Nervoso Central , Enterovirus Humano D , Infecções por Enterovirus , Modelos Animais , Mielite , Animais , Antivirais , Viroses do Sistema Nervoso Central/complicações , Viroses do Sistema Nervoso Central/virologia , Criança , Surtos de Doenças , Progressão da Doença , Enterovirus Humano D/patogenicidade , Enterovirus Humano D/fisiologia , Infecções por Enterovirus/complicações , Humanos , Mielite/complicações , Mielite/virologia , Vacinas Virais
6.
Sci Rep ; 11(1): 20595, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663881

RESUMO

The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Luz , SARS-CoV-2 , Traqueia/efeitos da radiação , Replicação Viral/efeitos da radiação , Adulto , Animais , Antivirais/farmacologia , Brônquios , Calibragem , Sistema Livre de Células , Chlorocebus aethiops , Epitélio/patologia , Feminino , Humanos , Mucosa Respiratória/efeitos da radiação , Traqueia/virologia , Células Vero
7.
Vaccine ; 39(38): 5410-5421, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34391593

RESUMO

Traditional bolus vaccine administration leads to rapid clearance of vaccine from lymphoid tissue. However, there is increasing evidence suggesting that the kinetics of antigen delivery can impact immune responses to vaccines, particularly when tailored to mimic natural infections. Here, we present the specific enhancements sustained release immunization confers to seasonal influenza vaccine, including the magnitude, durability, and breadth of humoral responses. To achieve sustained vaccine delivery kinetics, we have developed a microneedle array patch (MIMIX), with silk fibroin-formulated vaccine tips designed to embed in the dermis after a short application to the skin and release antigen over 1-2 weeks, mimicking the time course of a natural influenza infection. In a preclinical murine model, a single influenza vaccine administration via MIMIX led to faster seroconversion, response-equivalence to prime-boost bolus immunization, higher HAI titers against drifted influenza strains, and improved protective efficacy upon lethal influenza challenge when compared with intramuscular injection. These results highlight infection mimicry, achieved through sustained release silk microneedles, as a powerful approach to improve existing seasonal influenza vaccines, while also suggesting the broader potential of this platform technology to enable more efficacious next-generation vaccines and vaccine combinations.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Imunogenicidade da Vacina , Influenza Humana/prevenção & controle , Camundongos , Agulhas , Seda
8.
Antiviral Res ; 180: 104753, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32114033

RESUMO

Seasonal influenza causes significant morbidity and mortality around the world each year, even with the use of vaccines and antivirals. There is a need for more effective treatments for severe and hospitalized cases of influenza. In this study, we have tested the efficacy of a human plasma-derived IgG product (FLU-IGIV) against seasonal influenza in mouse and ferret models of influenza infection. FLU-IGIV successfully protected mice (100% survival) against lethal influenza infection. Also, the survival rate observed with FLU-IGIV treatment was better than the survival rate observed with oseltamivir (60% survival). FLU-IGIV significantly reduced the viral load in the lungs compared to placebo (PBS) in ferrets infected with influenza A/California/07/2009 (H1N1pdm09) virus. Overall, these studies demonstrate the efficacy of human plasma-derived FLU-IGIV in relevant animal models of influenza virus infection.


Assuntos
Anticorpos Antivirais/uso terapêutico , Antivirais/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Infecções por Orthomyxoviridae/terapia , Animais , Antivirais/farmacocinética , Relação Dose-Resposta Imunológica , Feminino , Furões/virologia , Humanos , Imunoglobulinas Intravenosas/farmacocinética , Vírus da Influenza A Subtipo H1N1 , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Carga Viral/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 117(4): 2122-2132, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932446

RESUMO

There is a strong need for a new broad-spectrum antiinfluenza therapeutic, as vaccination and existing treatments are only moderately effective. We previously engineered a lectin, H84T banana lectin (H84T), to retain broad-spectrum activity against multiple influenza strains, including pandemic and avian, while largely eliminating the potentially harmful mitogenicity of the parent compound. The amino acid mutation at position 84 from histidine to threonine minimizes the mitogenicity of the wild-type lectin while maintaining antiinfluenza activity in vitro. We now report that in a lethal mouse model H84T is indeed nonmitogenic, and both early and delayed therapeutic administration of H84T intraperitoneally are highly protective, as is H84T administered subcutaneously. Mechanistically, attachment, which we anticipated to be inhibited by H84T, was only somewhat decreased by the lectin. Instead, H84T is internalized into the late endosomal/lysosomal compartment and inhibits virus-endosome fusion. These studies reveal that H84T is efficacious against influenza virus in vivo, and that the loss of mitogenicity seen previously in tissue culture is also seen in vivo, underscoring the potential utility of H84T as a broad-spectrum antiinfluenza agent.


Assuntos
Antivirais/administração & dosagem , Influenza Humana/tratamento farmacológico , Lectinas/administração & dosagem , Lectinas/genética , Musa/genética , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/genética , Internalização do Vírus/efeitos dos fármacos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/virologia , Masculino , Camundongos , Musa/química , Musa/metabolismo , Mutação , Engenharia de Proteínas
10.
Virology ; 526: 146-154, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390563

RESUMO

Enterovirus D68 (EV-D68) is unique among enteroviruses because of the ability to cause severe respiratory disease as well as neurological disease. We developed separate models of respiratory and neurological disease following EV-D68 infection in AG129 mice that respond to antiviral treatment with guanidine. In four-week-old mice infected intranasally, EV-D68 replicates to high titers in lung tissue increasing the proinflammatory cytokines MCP-1 and IL-6. The respiratory infection also produces an acute viremia. In 10-day-old mice infected intraperitoneally, EV-D68 causes a neurological disease with weight-loss, paralysis, and mortality. In our respiratory model, treatment with guanidine provides a two-log reduction in lung virus titers, reduces MCP-1 and IL-6, and prevents histological lesions in the lungs. Importantly, viremia is prevented by early treatment with guanidine. In our neurological model, guanidine treatment protects mice from weight-loss, paralysis, and mortality. These results demonstrate the utility of these models for evaluation of antiviral therapies for EV-D68 infection.


Assuntos
Antivirais/uso terapêutico , Modelos Animais de Doenças , Enterovirus Humano D , Infecções por Enterovirus/tratamento farmacológico , Guanidina/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Animais , Citocinas/metabolismo , Infecções por Enterovirus/patologia , Infecções por Enterovirus/fisiopatologia , Infecções por Enterovirus/virologia , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Camundongos , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/virologia , Infecções Respiratórias/patologia , Infecções Respiratórias/fisiopatologia , Infecções Respiratórias/virologia , Resultado do Tratamento , Carga Viral/efeitos dos fármacos , Viremia/prevenção & controle
11.
Antiviral Res ; 162: 61-70, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30521834

RESUMO

Enterovirus D68 (EV-D68) is a non-polio enterovirus that affects the respiratory system and can cause serious complications, especially in children and older people with weakened immune systems. As an emerging virus, there are no current antiviral therapies or vaccines available. Our goal was to develop a mouse model of human EV-D68 infection that mimicked the disease observed in humans and could be used for evaluation of experimental therapeutics. This is the first report of a respiratory disease model for EV-D68 infection in mice. We adapted the virus by 30 serial passages in AG129 mice, which are deficient in IFN- α/ß and -γ receptors. Despite a lack of weight loss or mortality in mice, lung function measured by plethysmography, showed an increase in enhanced pause (Penh) on days 6 and 7 post-infection. In addition, as virus adapted to mice, virus titer in the lungs increased 50-fold, and the pro-inflammatory cytokines MCP-1 and RANTES increased 15-fold and 2-fold in the lung, respectively. In addition, a time course of mouse-adapted EV-D68 infection was determined in lung, blood, liver, kidney, spleen, leg muscle, spinal cord and brain. Virus in the lung replicated rapidly after intranasal inoculation of adapted virus, 106 CCID50/mL by 4 h and 108.3 CCID50/mL by 24 h. Virus then spread to the blood and other tissues, including spinal cord and brain. This mouse model for EV-D68 infection includes enhanced pause (Penh) as an indicator of morbidity, and viremia, virus titers and proinflammatory cytokines in the lung, and lung histopathology as indicators of disease. Our mouse-adapted virus has a similar antiviral profile to the original isolate as well as another respiratory picornavirus, rhinovirus-14. This model will be valuable in evaluating experimental therapies in the future.


Assuntos
Modelos Animais de Doenças , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Pulmão/virologia , Infecções Respiratórias/virologia , Animais , Antivirais/uso terapêutico , Quimiocinas/imunologia , Citocinas/imunologia , Enterovirus Humano D , Infecções por Enterovirus/tratamento farmacológico , Feminino , Masculino , Camundongos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Carga Viral , Viremia
12.
Viruses ; 10(1)2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329211

RESUMO

Enterovirus D68 (EV-D68) caused a large outbreak in the summer and fall of 2014 in the United States. It causes serious respiratory disease, but causation of associated paralysis is controversial, because the virus is not routinely identified in cerebrospinal fluid. To establish clinical correlates with human disease, we evaluated EV-D68 infection in non-lethal paralysis mouse models. Ten-day-old mice lacking interferon responses were injected intraperitoneally with the virus. Paralysis developed in hindlimbs. After six weeks of paralysis, the motor neurons were depleted due to viral infection. Hindlimb muscles were also infected and degenerating. Even at the earliest stage of paralysis, muscles were still infected and were degenerating, in addition to presence of virus in the spinal cord. To model natural respiratory infection, five-day-old mice were infected intranasally with EV-D68. Two of the four infected mice developed forelimb paralysis. The affected limbs had muscle disease, but no spinal cord infection was detected. The unique contributions of this study are that EV-D68 causes paralysis in mice, and that causation by muscle disease, with or without spinal cord disease, may help to resolve the controversy that the virus can cause paralysis, even if it cannot be identified in cerebrospinal fluid.


Assuntos
Enterovirus Humano D/patogenicidade , Infecções por Enterovirus/fisiopatologia , Mielite/virologia , Miosite/virologia , Paralisia/etiologia , Animais , Infecções por Enterovirus/virologia , Masculino , Camundongos , Neurônios Motores/virologia , Atrofia Muscular/fisiopatologia , Atrofia Muscular/virologia , Mielite/fisiopatologia , Miosite/fisiopatologia , Paralisia/virologia , Receptor de Interferon alfa e beta/deficiência , Receptores de Interferon/deficiência , Medula Espinal/virologia , Receptor de Interferon gama
13.
Antiviral Res ; 145: 184-196, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28774800

RESUMO

The 30th International Conference on Antiviral Research (ICAR) was held in Atlanta, GA, USA from May 18 to 21, 2017. This report provides an account of award lectures, invited keynote addresses and oral presentations during the meeting. The 2017 Gertrude Elion Memorial Lecture Award by Michael Sofia highlighted one of the most important accomplishments in recent drug discovery in antiviral research, the identification of the hepatitis C virus direct-acting antiviral sofosbuvir and new alternatives to combat hepatitis B virus (HBV) infection. The Antonín Holý Lecture Award by David Chu on medicinal chemistry provided an overview of early developments of nucleoside analogs for the treatment of HIV and varicella zoster virus infection and how this knowledge serves to develop new drugs targeting HBV. Priscilla Yang gave the first ISAR Women in Science lecture. She reported on pharmacological validation of new antiviral targets for dengue, Zika and other flaviviruses. The William Prusoff Young Investigator Lecture Award by Maaike Everts described the Alabama Drug Discovery Alliance and the Antiviral Drug Discovery and Development Consortium, and how they are helping to accelerate the development of new antivirals. The 30th ICAR was a success in promoting new discoveries in antiviral drug development and research. The 31st ICAR will be held in Porto, Portugal, June 11-15, 2018.


Assuntos
Antivirais , Química Farmacêutica , Descoberta de Drogas , Dengue/tratamento farmacológico , Hepatite B/tratamento farmacológico , Humanos , Infecção por Zika virus/tratamento farmacológico
14.
Vaccine ; 35(35 Pt B): 4569-4577, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28716554

RESUMO

The emergence of pandemic influenza strains, particularly the reemergence of the swine-derived influenza A (H1N1) in 2009, is reaffirmation that influenza viruses are very adaptable and influenza remains as a significant global public health treat. As recommended by the World Health Organization (WHO), the use of adjuvants is an attractive approach to improve vaccine efficacy and allow dose-sparing during an influenza emergency. In this study, we utilized CaPtivate Pharmaceutical's proprietary calcium phosphate nanoparticles (CaPNP) vaccine adjuvant and delivery platform to formulate an inactivated whole virus influenza A/CA/04/2009 (H1N1pdm) vaccine as a potential dose-sparing strategy. We evaluated the relative immunogenicity and the efficacy of the formulation in BALB/c mice following single intramuscularly administration of three different doses (0.3, 1, or 3µg based on HA content) of the vaccine in comparison to non-adjuvanted or alum-adjuvant vaccines. We showed that, addition of CaPNP in vaccine elicited significantly higher hemagglutination inhibition (HAI), virus neutralization (VN), and IgG antibody titers, at all dose levels, relative to the non-adjuvanted vaccine. In addition, the vaccine containing CaPNP provided equal protection with 1/3rd of the antigen dose as compared to the non-adjuvanted or alum-adjuvanted vaccines. Our data provided support to earlier studies indicating that CaPNP is an attractive vaccine adjuvant and delivery system and should play an important role in the development of safe and efficacious dose-sparing vaccines. Our findings also warrant further investigation to validate CaPNP's capacity as an alternative adjuvant to the ones currently licensed for influenza/pandemic influenza vaccination.


Assuntos
Adjuvantes Imunológicos , Fosfatos de Cálcio/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Nanopartículas , Infecções por Orthomyxoviridae/prevenção & controle , Hidróxido de Alumínio/imunologia , Animais , Anticorpos Antivirais/sangue , Relação Dose-Resposta Imunológica , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Influenza Humana/prevenção & controle , Camundongos , Nanopartículas/química , Testes de Neutralização , Uso Off-Label , Pandemias/prevenção & controle , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/química
15.
Antiviral Res ; 141: 62-72, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28161578

RESUMO

The extracellular domain of influenza A ion channel membrane matrix protein 2 (M2e) is considered to be a potential candidate to develop a universal influenza A vaccine. However poor immunogenicity of M2e presents a significant roadblock. We have developed a vaccine formulation comprising of the consensus M2e peptide conjugated to gold nanoparticles (AuNPs) with CpG as a soluble adjuvant (AuNP-M2e + sCpG). We demonstrate that intranasal delivery of AuNP-M2e + sCpG in mice induces lung B cell activation and robust serum anti-M2e immunoglobulin G (IgG) response, with stimulation of both IgG1 and IgG2a subtypes. Using Madin-Darby canine kidney (MDCK) cells infected with A/California/04/2009 (H1N1pdm) pandemic strain, or A/Victoria/3/75 (H3N2), or the highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1) as immunosorbants we further show that the antibodies generated are also capable of binding to the homotetrameric form of M2 expressed on infected cells. Lethal challenge of vaccinated mice with A/California/04/2009 (H1N1pdm) pandemic strain, A/Victoria/3/75 (H3N2), and the highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1) led to 100%, 92%, and 100% protection, respectively. Overall, this study helps to lay the foundation of a potential universal influenza A vaccine.


Assuntos
Proteção Cruzada , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Nanopartículas Metálicas , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas da Matriz Viral/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Ouro , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Proteínas da Matriz Viral/química
16.
ACS Appl Mater Interfaces ; 8(31): 19907-15, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27403657

RESUMO

Peptide-conjugated nanoparticles (NPs) have promising potential for applications in biosensing, diagnosis, and therapeutics because of their appropriate size, unique self-assembly, and specific substrate-binding properties. However, controlled assembly and selective target binding are difficult to achieve with simple peptides on NP surfaces because high surface energy makes NPs prone to self-aggregate and adhere nonspecifically. Here, we report the self-assembly and gelatin binding properties of collagen mimetic peptide (CMP) conjugated gold NPs (CMP-NPs). We show that the orientation of CMPs displayed on the NP surface can control NP assembly either by promoting or hindering triple helical folding between CMPs of neighboring NPs. We also show that CMP-NPs can specifically bind to denatured collagen by forming triple-helical hybrids between denatured collagen strands and CMPs, demonstrating their potential use for detection and selective removal of gelatin from protein mixtures. CMP conjugated NPs offer a simple and effective method for NP assembly and for targeting denatured collagens with high specificity. Therefore, they may lead to new types of functional nanomaterials for detection and study of denatured collagen associated with diseases characterized by high levels of collagen degradation.


Assuntos
Nanopartículas , Biomimética , Colágeno , Gelatina , Peptídeos
17.
Antiviral Res ; 131: 61-5, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27063860

RESUMO

Compounds were evaluated for antiviral activity in rhabdomyosarcoma (RD) cells against a recent 2014 clinical isolate of enterovirus D68 (EV-D68), a 1962 strain of EV-68D, rhinovirus 87 (RV-87, serologically the same as EV-D68), and enterovirus 71 (EV-71). Test substances included known-active antipicornavirus agents (enviroxime, guanidine HCl, pirodavir, pleconaril, and rupintrivir), nucleobase/nucleoside analogs (3-deazaguanine and ribavirin), and three novel epidithiodiketopiperazines (KCN-2,2'-epi-19, KCN-19, and KCN-21). Of these, rupintrivir was the most potent, with 50% inhibition of viral cytopathic effect (EC50) and 90% inhibition (EC90) of virus yield at 0.0022-0.0053 µM against EV-D68. Enviroxime, pleconaril and the KCN compounds showed efficacy at 0.01-0.3 µM; 3-deazaguanine and pirodavir inhibited EV-D68 at 7-13 µM, and guanidine HCl and ribavirin were inhibitory at 80-135 µM. Pirodavir was active against EV-71 (EC50 of 0.78 µM) but not against RV-87 or EV-D68, and all other compounds were less effective against EV-71 than against RV-87 and EV-D68. The most promising compound inhibiting both virus infections at low concentrations was rupintrivir. Antiviral activity was confirmed for the ten compounds in virus yield reduction (VYR) assays in RD cells, and for enviroxime, guanidine HCl, and pirodavir by cytopathic effect (CPE) assays in A549, HeLa-Ohio-1, and RD cells. These studies may serve as a basis for further pre-clinical discovery of anti-enterovirus inhibitors. Furthermore, the antiviral profiles and growth characteristics observed herein support the assertion that EV-D68 should be classified together with RV-87.


Assuntos
Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano D/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos , Células A549 , Antimetabólitos/farmacologia , Benzimidazóis/farmacologia , Enterovirus Humano A/crescimento & desenvolvimento , Enterovirus Humano D/crescimento & desenvolvimento , Guanina/análogos & derivados , Guanina/farmacologia , Células HeLa , Humanos , Oxidiazóis/farmacologia , Oxazóis , Oximas , Picornaviridae/efeitos dos fármacos , Piperazinas/farmacologia , Piperidinas/farmacologia , Piridazinas/farmacologia , Rabdomiossarcoma , Rhinovirus/crescimento & desenvolvimento , Ribavirina/farmacologia , Sulfonamidas
18.
Cell ; 163(3): 746-58, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26496612

RESUMO

A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino-acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity, while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity, while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code.


Assuntos
Lectinas de Plantas/química , Lectinas de Plantas/genética , Fármacos Anti-HIV/química , Sequência de Carboidratos , Engenharia Genética , Mitógenos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Musa/química
19.
Antimicrob Agents Chemother ; 59(1): 520-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385098

RESUMO

The treatment of progressive vaccinia in individuals has involved antiviral drugs, such as cidofovir (CDV), brincidofovir, and/or tecovirimat, combined with vaccinia immune globulin (VIG). VIG is costly, and its supply is limited, so sparing the use of VIG during treatment is an important objective. VIG sparing was modeled in immunosuppressed mice by maximizing the treatment benefits of CDV combined with VIG to determine the effective treatments that delayed the time to death, reduced cutaneous lesion severity, and/or decreased tissue viral titers. SKH-1 hairless mice immunosuppressed with cyclophosphamide and hairless SCID mice (SHO strain) were infected cutaneously with vaccinia virus. Monotherapy, dual combinations (CDV plus VIG), or triple therapy (topical CDV, parenteral CDV, and VIG) were initiated 2 days postinfection and were given every 3 to 4 days through day 11. The efficacy assessment included survival rate, cutaneous lesion severity, and viral titers. Delays in the time to death and the reduction in lesion severity occurred in the following order of efficacy: triple therapy had greater efficacy than double combinations (CDV plus VIG or topical plus parenteral CDV), which had greater efficacy than VIG alone. Parenteral administration of CDV or VIG was necessary to suppress virus titers in internal organs (liver, lung, and spleen). The skin viral titers were significantly reduced by triple therapy only. The greatest efficacy was achieved by triple therapy. In humans, this regimen should translate to a faster cure rate, thus sparing the amount of VIG used for treatment.


Assuntos
Antivirais/farmacologia , Citosina/análogos & derivados , Imunoglobulinas/farmacologia , Organofosfonatos/farmacologia , Vacínia/tratamento farmacológico , Administração Tópica , Animais , Antivirais/administração & dosagem , Cidofovir , Citosina/administração & dosagem , Citosina/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Imunoglobulinas/administração & dosagem , Infusões Parenterais , Camundongos Pelados , Camundongos SCID , Organofosfonatos/administração & dosagem , Dermatopatias Infecciosas/tratamento farmacológico , Dermatopatias Infecciosas/virologia , Resultado do Tratamento , Vacínia/imunologia , Vacínia/virologia
20.
J Antimicrob Chemother ; 69(8): 2164-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24777908

RESUMO

OBJECTIVES: Emerging drug resistance to antiviral therapies is an increasing challenge for the treatment of influenza virus infections. One new antiviral compound, BTA938, a dimeric derivative of the viral neuraminidase inhibitor zanamivir, contains a 14-carbon linker bridging two zanamivir moieties. In these studies, we evaluated antiviral efficacy in cell cultures infected with influenza virus and in mouse models of lethal influenza using H1N1pdm09, H3N2 and oseltamivir-resistant (H275Y) viruses. METHODS: In vitro activity was evaluated against 22 strains of influenza virus. Additionally, in vivo studies compared the efficacy of BTA938 or zanamivir after intranasal treatment. We also tested the hypothesis of a dual mode of action for BTA938 using scanning electron microscopy (SEM). RESULTS: BTA938 inhibited the viruses at nanomolar concentrations in vitro with a median 50% effective concentration value of 0.5 nM. In mouse models, the dimer provided ∼10-fold greater protection than zanamivir. The data also showed that a single low dose (3 mg/kg) protected 100% of mice from an otherwise lethal oseltamivir-resistant (H275Y) influenza virus infection. Remarkably, a single prophylactic treatment (10 mg/kg) administered 7 days before the challenge protected 70% of mice and when administered 1 or 3 days before the challenge it protected 90% of mice. Additionally, SEM provides evidence that the increased antiviral potency may be mediated by an enhanced aggregation of virus on the cell surface. CONCLUSIONS: In vitro and in vivo experiments showed the high antiviral activity of BTA938 for the treatment of influenza virus infections. Moreover, we demonstrated that a single dose of BTA938 is sufficient for prophylactic and therapeutic protection in mouse models.


Assuntos
Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Zanamivir/análogos & derivados , Zanamivir/farmacologia , Animais , Antivirais/farmacologia , Cães , Combinação de Medicamentos , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Feminino , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H3N2/classificação , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/virologia , Oseltamivir/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA