Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 6(11): 3824-3840, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34704740

RESUMO

One of the biggest global challenges for our societies is to provide natural resources to the rapidly expanding population while maintaining sustainable and ecologically friendly products. The increasing public concern about toxic insecticides has resulted in the rapid development of alternative techniques based on natural infochemicals (ICs). ICs (e.g., pheromones, allelochemicals, volatile organic compounds) are secondary metabolites produced by plants and animals and used as information vectors governing their interactions. Such chemical language is the primary focus of chemical ecology, where behavior-modifying chemicals are used as tools for green pest management. The success of ecological programs highly depends on several factors, including the amount of ICs that enclose the crop, the range of their diffusion, and the uniformity of their application, which makes precise detection and quantification of ICs essential for efficient and profitable pest control. However, the sensing of such molecules remains challenging, and the number of devices able to detect ICs in air is so far limited. In this review, we will present the advances in sensing of ICs including biochemical sensors mimicking the olfactory system, chemical sensors, and sensor arrays (e-noses). We will also present several mathematical models used in integrated pest management to describe how ICs diffuse in the ambient air and how the structure of the odor plume affects the pest dynamics.


Assuntos
Feromônios , Compostos Orgânicos Voláteis , Animais , Nariz Eletrônico , Odorantes , Plantas
2.
ACS Appl Mater Interfaces ; 7(45): 25334-40, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26540482

RESUMO

For efficient organic photovoltaic (OPV) solar cells, a low work function electrode is necessary to enhance the built-in voltage of the active layer, thereby improving the overall efficiency. Calcium is often used for this purpose in the laboratory; however, its development on a larger scale is impaired by its high reactivity with oxygen and water and the resulting low stability of solar cells under operation. The influence of a novel interlayer, lanthanum hexaboride (LaB6), on the electronic properties of OPV is studied in this work. Similarly to calcium, when LaB6 is used as an interlayer, it enhances the built-in voltage in the device, leading to a higher fill factor (FF) and optimal open circuit voltage (V(oc)). As a result, optimized LaB6-based devices present significantly improved power conversion efficiencies. More importantly, while calcium/aluminum (Ca/Al) and aluminum (Al) cathodes lose their capacity to enhance the internal electrical field during thermal aging, the LaB6/aluminum (LaB6/Al) electrode remains stable. This remarkable effect results in a highly stable V(oc) and flat-band potential during aging.

3.
Behav Processes ; 106: 122-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24857979

RESUMO

We investigated the prey-predator interactions between the European honeybee, Apis mellifera, and the invasive yellow-legged hornet, Vespa velutina, which first invaded France in 2004 and thereafter spread to neighbouring European countries (Spain, Portugal and Italy). Our goal was to determine how successfully honeybees are able to defend their colonies against their new predator in Europe. Experiments were conducted in the southwest of France-the point of entry of the hornet in Europe-under natural and semi-controlled field conditions. We investigated a total of eight apiaries and 95 colonies subjected to either low or high levels of predation. We analyzed hornet predatory behaviour and collective response of colonies under attack. The results showed that A. mellifera in France exhibit an inefficient and unorganized defence against V. velutina, unlike in other regions of Europe and other areas around the globe where honeybees have co-evolved with their natural Vespa predators.


Assuntos
Abelhas/fisiologia , Comportamento Predatório/fisiologia , Comportamento Social , Vespas/fisiologia , Animais , França , Espécies Introduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA