RESUMO
In this research nylon fibers wastes (NF) were fabricated into porous sheet using a phase inversion technique to be utilized as an adsorbent materials for Congo red dye (CR). The fabricated sheet denoted as NS was characterized using FTIR and XRD. The surface studies of the adsorbent materials using SEM and BET analysis reveals a highly pores structure with an average pore volume 0.61 cc/g and BET surface area of 767 m2/g. The adsorption studies of fabricated NS were employed into CR at different parameters as pH, effect of time and dye concentration. The adsorption isotherm and kinetic studies were more fit to Langmuir and pseudo second order models. The maximum adsorption capacity qmax reached 188 mg/g with removal percentage of 95 for CR concentration of 400 mg/L at pH 6 and 0.025 g NS dose for 10 ml CR solution. The regeneration study reveals a prominent adsorption behavior of NS with removal % of 88.6 for CR (300 mg/L) after four adsorption desorption cycles. Effect of incorporation of NaonFil Clay to NS was studied using Response Surface Methodology (RSM) modeling and reveals that 98.4% removal of CR could be achieved by using 19.35% wt. of fiber with 8.2 g/L dose and zero clay, thus at a predetermined parameters studies of NanoFil clay embedded into NS, there are no significant effect for %R for CR.