Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 23(1): 11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303011

RESUMO

Global impact of COVID-19 pandemic has heightened the urgency for efficient virus detection and identification of variants such as the Q57H mutation. Early and efficient detection of SARS-CoV-2 among densely populated developing countries is paramount objective. Although RT-PCR assays offer accuracy, however, dependence on expansive kits and availability of allied health resources pose an immense challenge for developing countries. In the current study, RT-LAMP based detection of SARS-Cov-2 with subsequent confirmation of Q57H variant through ARMS-PCR was performed. Among the 212 collected samples, 134 yielded positive results, while 78 tested negative using RT-LAMP. Oropharyngeal swabs of suspected individuals were collected and processed for viral RNA isolation. Isolated viral RNA was processed further by using either commercially available WarmStart Master Mix or our in house developed LAMP master mix separately. Subsequently, the end results of each specimen were evaluated by colorimetry. For LAMP assays, primers targeting three genes (ORF1ab, N and S) were designed using PrimerExplorer software. Interestingly, pooling of these three genes in single reaction tube increased sensitivity (95.5%) and specificity (93.5%) of LAMP assay. SARS-CoV-2 positive specimens were screened further for Q57H mutation using ARMS-PCR. Based on amplicon size variation, later confirmed by sequencing, our data showed 18.5% samples positive for Q57H mutation. Hence, these findings strongly advocate use of RT-LAMP-based assay for SARS-CoV-2 screening within suspected general population. Furthermore, ARMS-PCR also provides an efficient mean to detect prevalent mutations against SARS-Cov-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , RNA Viral/genética , Reação em Cadeia da Polimerase , Teste para COVID-19
2.
Can J Microbiol ; 58(9): 1047-54, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22906205

RESUMO

Bacillary dysentery, common in developing countries, is usually caused by Shigella species. A major problem in shigellosis is the rapid emergence of multidrug-resistant strains. This is the first detailed molecular study on drug resistance of Shigella isolates from the Faisalabad region of Pakistan. Ninety-five Shigella isolates obtained after screening of 2500 stool samples were evaluated for in vitro resistance to commonly used antimicrobial agents; the presence or absence of 20 of the most relevant drug resistance genes; and the prevalence of integrons 1, 2, and 3. Shigella flexneri was found to be the most prevalent and most resistant species. Collectively, high resistance was found towards ampicillin (96.84%), tetracycline (93.68%), streptomycin (77.89%), and chloramphenicol (72.63%). Significant emerging resistance was detected towards the modern frontline drugs ciprofloxacin (12.63%), cefradine (17.89%), ceftriaxone (20.00%), cefoperazone (22.10%), and cefixime (28.42%). Prevalence rates for bla(TEM), bla(CTX-M), gyrA, gyrB, qnrS, aadA1, strAB, tetA, tetB, catA, and catP were 78.94%, 12.63%, 20.00%, 21.05%, 21.05%, 67.36%, 42.10%, 12.63%, 53.68%, 33.68%, and 25.26%, respectively. Class 2 integrons (42.10%) were more common in the local isolates. Simultaneous detection of class 1 and 2 integrons in some isolates and a rapidly emerging resistance to modern frontline drugs are the major findings of this study.


Assuntos
Anti-Infecciosos/farmacologia , Integrons/genética , Shigella/efeitos dos fármacos , Shigella/genética , Farmacorresistência Bacteriana/genética , Disenteria Bacilar/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Paquistão , Shigella flexneri/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA