Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Vet Intern Med ; 38(3): 1725-1729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500407

RESUMO

Trypanosoma cruzi infection in dogs can cause heart failure and sudden death with few treatment options available. A litter of 4 dogs living in a T cruzi endemic area were randomized to prophylaxis and nonprophylaxis groups as part of a study evaluating a modified benznidazole dosing regimen administered twice weekly to prevent T cruzi infection during a vector transmission season. The 2 dogs that received prophylaxis remained healthy without T cruzi infection or cardiac disease for >2 years. One dog that did not receive prophylaxis died unexpectedly with acute T cruzi-induced pancarditis, and the second dog tested positive for T cruzi and developed complex arrhythmias with markedly increased cardiac troponin I and improved with a higher benznidazole treatment dose. Although the small sample size precludes definitive conclusions, we describe the potential clinical benefit of prophylactic and early treatment with modified benznidazole dosing regimens for dogs with T cruzi infection.


Assuntos
Doença de Chagas , Doenças do Cão , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Cães , Animais , Nitroimidazóis/uso terapêutico , Nitroimidazóis/administração & dosagem , Doenças do Cão/tratamento farmacológico , Doença de Chagas/veterinária , Doença de Chagas/tratamento farmacológico , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/uso terapêutico , Tripanossomicidas/administração & dosagem , Feminino , Masculino
2.
J Immunol ; 211(7): 1123-1133, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603014

RESUMO

Host cell invasion by Trypanosoma cruzi is a markedly silent process, with limited host transcriptional changes indicative of innate immune recognition, except for a modest type I IFN (IFN-I) response. In this study, we show that T. cruzi-induced IFN-ß production was nearly abolished in primary murine cGAS-/- or stimulator of IFN genes (STING)-deficient (STINGGt) macrophages and fibroblasts. T. cruzi infection did not impact the ability of IFN-regulatory factor reporter macrophages to respond to classical cGAS-STING agonists, indicating that the limited IFN-ß induction is not due to active parasite suppression. cGAS-/-, STINGGt, and IFN-α/ß receptor-/- (IFNAR-/-) macrophages infected with T. cruzi yielded significantly higher numbers of amastigotes compared with wild-type macrophages; however, the impact of the STING pathway during infection in vivo is more complex. Despite an initial increase in parasite growth, STINGGt and IFNAR-/- mice ultimately had lower parasite burden in footpads as compared with wild-type mice, demonstrating a role for IFN-I expression in potentiating parasite growth at the infection site. STING pathway activation had little impact on parasite levels in the skeletal muscle; however, in the heart, cGAS-/- and STINGGt mice, but not IFNAR-/- mice, accumulated higher acute parasite loads, suggesting a protective role of STING sensing of T. cruzi in this organ that was independent of IFN-I. Together, these results demonstrate that host cGAS-STING senses T. cruzi infection, enhancing parasite growth at the site of entry, and contributes to acute-phase parasite restriction in the heart, a major site of tissue damage in chronic T. cruzi infection.


Assuntos
Doença de Chagas , Interferon Tipo I , Trypanosoma cruzi , Animais , Camundongos , Controle de Doenças Transmissíveis , Cromogranina A , Nucleotidiltransferases/genética
3.
J Zoo Wildl Med ; 54(2): 412-416, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37428708

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is a zoonotic, vector-borne, protozoan hemoflagellate with a wide host range. An 11-yr-old, captive-bred male De Brazza's monkey (Cercopithecus neglecus) presented with weight loss despite normal appetite. Examination revealed hypoglycemia, nonregenerative anemia, and many trypanosomes on a blood smear. A whole blood sample was PCR-positive for T. cruzi discrete typing unit TcIV and the monkey seroconverted using two different methods. The monkey was treated with the standard human dose of benznidazole twice daily for 60 d; however, blood obtained over the next 1.5 yr posttreatment remained PCR-positive for T. cruzi. A second course of benznidazole at a higher dose but lower frequency for 26 wk was required for the monkey to convert to sustained PCR-negative status. The monkey recovered with no apparent lasting effects.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Masculino , Humanos , Alabama , Doença de Chagas/diagnóstico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/veterinária , Cercopithecus
4.
Antimicrob Agents Chemother ; 67(5): e0013223, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37039666

RESUMO

Trypanosoma cruzi naturally infects a broad range of mammalian species and frequently results in the pathology that has been most extensively characterized in human Chagas disease. Currently employed treatment regimens fail to achieve parasitological cure of T. cruzi infection in the majority of cases. In this study, we have extended our previous investigations of more effective, higher dose, intermittent administration protocols using the FDA-approved drug benznidazole (BNZ), in experimentally infected mice and in naturally infected dogs and nonhuman primates (NHP). Collectively, these studies demonstrate that twice-weekly administration of BNZ for more than 4 months at doses that are ~2.5-fold that of previously used daily dosing protocols, provided the best chance to obtain parasitological cure. Dosing less frequently or for shorter time periods was less dependable in all species. Prior treatment using an ineffective dosing regimen in NHPs did not prevent the attainment of parasitological cure with an intensified BNZ dosing protocol. Furthermore, parasites isolated after a failed BNZ treatment showed nearly identical susceptibility to BNZ as those obtained prior to treatment, confirming the low risk of induction of drug resistance with BNZ and the ability to adjust the treatment protocol when an initial regimen fails. These results provide guidance for the use of BNZ as an effective treatment for T. cruzi infection and encourage its wider use, minimally in high value dogs and at-risk NHP, but also potentially in humans, until better options are available.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Camundongos , Cães , Humanos , Animais , Tripanossomicidas/uso terapêutico , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitroimidazóis/uso terapêutico , Nitroimidazóis/farmacologia , Protocolos Clínicos , Primatas , Mamíferos
5.
Trends Parasitol ; 39(6): 423-431, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024318

RESUMO

The Chagas field has gone >50 years without tangible progress toward new therapies. My colleagues and I have recently reported on a benzoxaborole compound that achieves consistent parasitological cure in experimentally infected mice and in naturally infected non-human primates (NHPs). While these results do not assure success in human clinical trials, they significantly de-risk this process and form a strong justification for such trials. Highly effective drug discovery depends on a solid understanding of host and parasite biology and excellent knowledge in designing and validating chemical entities. This opinion piece seeks to provide perspectives on the process that led to the discovery of AN15368, with the hope that this will facilitate the discovery of additional clinical candidates for Chagas disease.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Camundongos , Animais , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Descoberta de Drogas/métodos
6.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778432

RESUMO

Trypanosoma cruzi naturally infects a broad range of mammalian species and frequently results in the pathology that has been most extensively characterized in human Chagas disease. Currently employed treatment regimens fail to achieve parasitological cure of T. cruzi infection in the majority of cases. In this study, we have extended our previous investigations of more effective, higher dose, intermittent administration protocols using the FDA-approved drug benznidazole (BNZ), in experimentally infected mice and in naturally infected dogs and non-human primates (NHP). Collectively these studies demonstrate that twice-weekly administration of BNZ for more than 4 months at doses that are ∻2.5-fold that of previously used daily dosing protocols, provided the best chance to obtain parasitological cure. Dosing less frequently or for shorter time periods was less dependable in all species. Prior treatment using an ineffective dosing regimen in NHPs did not prevent the attainment of parasitological cure with an intensified BNZ dosing protocol. Furthermore, parasites isolated after a failed BNZ treatment showed nearly identical susceptibility to BNZ as those obtained prior to treatment, confirming the low risk of induction of drug resistance with BNZ and the ability to adjust the treatment protocol when an initial regimen fails. These results provide guidance for the use of BNZ as an effective treatment for T. cruzi infection and encourage its wider use, minimally in high value dogs and at-risk NHP, but also potentially in humans, until better options are available.

7.
mSphere ; 8(1): e0060122, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36695605

RESUMO

Although parasite entry through breaks in the skin or mucosa is one of the main routes of natural transmission of Trypanosoma cruzi, little is known about the host cell types initially invaded nor the ability of those host cells to initiate immune responses at the site of infection. To gain insights into these early events, we studied the fate of fluorescently tagged T. cruzi delivered subcutaneously in mouse footpads or ears. We demonstrate that the majority of parasites introduced into the skin initially proliferate there until 8 to 10 days postinfection, when the parasite load decreases. This decline in parasite numbers is dependent on the presence of an intact T cell compartment and on the ability of hosts to produce gamma interferon (IFN-γ). Many of the parasite-containing cells at the initial infection site display a macrophage/monocyte phenotype but with low expression of activation markers, suggesting that these cells provide an early niche for T. cruzi proliferation, rather than being active in parasite control. It is only after the first round of T. cruzi replication and release from host cells that signs of immune activation and control of parasites become apparent. The delay in the activation and failure to rapidly control parasite replication are observed even when T. cruzi-primed T cells are present, such as in chronically infected mice. This failure of a primed immune system to recognize and react prior to extensive parasite expansion at the infection site likely poses a significant challenge for the development of vaccines aiming to prevent T. cruzi infection. IMPORTANCE Trypanosoma cruzi, the parasite causing Chagas disease, usually infects through the mucosa or breaks in the skin, but little is known about the parasite's fate at the site of entry or the early events involving immune control there. Here, we track the local proliferation and subsequent dissemination of fluorescently tagged T. cruzi and the initial immune response at the point of entry. We show that T. cruzi preferentially infects innate immune cells in the skin and that the stimulation of an adaptive T cell response does not occur until after the release of parasites from this first round of infected host cells. This first immunologically "silent" proliferation occurs even in the presence of a strong immune T cell memory generated by previous infection. This capacity of T. cruzi to establish infections while avoiding initial immune recognition has important implications for the potential to develop vaccines to prevent T. cruzi infection.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Camundongos , Animais , Linfócitos T , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Interferon gama , Macrófagos
8.
Clin Infect Dis ; 76(8): 1516-1520, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36373213

RESUMO

Human clinical trials are expensive, and when they fail, they create the impression that a problem is intractable, thus depressing interest in future attempts. For neglected tropical diseases, where there are likely limited numbers of "shots on goal," such failures need to be assiduously avoided. Chagas disease drug discovery efforts have experienced more than its share of human clinical trial failures. Here are some guidelines, many specific for Chagas, but some that might also have application for other neglected tropical diseases. Chagas disease has major challenges (eg, the lack of a definitive test of cure) but also has outstanding advantages, among these the unmatched multi-species natural infection systems that can be exploited to de-risk compounds before human trials. Fully utilizing these advantages while frankly acknowledging and addressing the challenges should bring better options to patients, sooner.


Assuntos
Doença de Chagas , Humanos , Doença de Chagas/tratamento farmacológico , Descoberta de Drogas , Motivação , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/prevenção & controle , Ensaios Clínicos como Assunto
9.
PLoS Negl Trop Dis ; 16(10): e0010688, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36315597

RESUMO

Trypanosoma cruzi naturally infects a wide variety of wild and domesticated mammals, in addition to humans. Depending on the infection dose and other factors, the acute infection can be life-threatening, and in all cases, the risk of chagasic heart disease is high in persistently infected hosts. Domestic, working, and semi-feral dogs in the Americas are at significant risk of T. cruzi infection and in certain settings in the southern United States, the risk of new infections can exceed 30% per year, even with the use of vector control protocols. In this study, we explored whether intermittent low-dose treatment with the trypanocidal compound benznidazole (BNZ) during the transmission season, could alter the number of new infections in dogs in an area of known, intense transmission pressure. Preliminary studies in mice suggested that twice-weekly administration of BNZ could prevent or truncate infections when parasites were delivered at the mid-point between BNZ doses. Pre-transmission season screening of 126 dogs identified 53 dogs (42.1%) as T. cruzi infection positive, based upon blood PCR and Luminex-based serology. Serial monitoring of the 67 uninfected dogs during the high transmission season (May to October) revealed 15 (22.4%) new infections, 6 in the untreated control group and 9 in the group receiving BNZ prophylaxis, indicating no impact of this prophylaxis regimen on the incidence of new infections. Although these studies suggest that rigorously timed and more potent dosing regimen may be needed to achieve an immediate benefit of prophylaxis, additional studies would be needed to determine if drug prophylaxis reduced disease severity despite this failure to prevent new infections.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Cães , Animais , Camundongos , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Doença de Chagas/veterinária , Nitroimidazóis/uso terapêutico , Mamíferos
10.
Nat Microbiol ; 7(10): 1536-1546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36065062

RESUMO

Trypanosoma cruzi, the agent of Chagas disease, probably infects tens of millions of people, primarily in Latin America, causing morbidity and mortality. The options for treatment and prevention of Chagas disease are limited and underutilized. Here we describe the discovery of a series of benzoxaborole compounds with nanomolar activity against extra- and intracellular stages of T. cruzi. Leveraging both ongoing drug discovery efforts in related kinetoplastids, and the exceptional models for rapid drug screening and optimization in T. cruzi, we have identified the prodrug AN15368 that is activated by parasite carboxypeptidases to yield a compound that targets the messenger RNA processing pathway in T. cruzi. AN15368 was found to be active in vitro and in vivo against a range of genetically distinct T. cruzi lineages and was uniformly curative in non-human primates (NHPs) with long-term naturally acquired infections. Treatment in NHPs also revealed no detectable acute toxicity or long-term health or reproductive impact. Thus, AN15368 is an extensively validated and apparently safe, clinically ready candidate with promising potential for prevention and treatment of Chagas disease.


Assuntos
Doença de Chagas , Pró-Fármacos , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Primatas , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
11.
J Vis Exp ; (184)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35815998

RESUMO

Chagas disease is a neglected pathology that affects millions of people worldwide, mainly in Latin America. The Chagas disease agent, Trypanosoma cruzi (T. cruzi), is an obligate intracellular parasite with a diverse biology that infects several mammalian species, including humans, causing cardiac and digestive pathologies. Reliable detection of T. cruzi in vivo infections has long been needed to understand Chagas disease's complex biology and accurately evaluate the outcome of treatment regimens. The current protocol demonstrates an integrated pipeline for automated quantification of T. cruzi-infected cells in 3D-reconstructed, cleared organs. Light-sheet fluorescent microscopy allows for accurately visualizing and quantifying of actively proliferating and dormant T. cruzi parasites and immune effector cells in whole organs or tissues. Also, the CUBIC-HistoVision pipeline to obtain uniform labeling of cleared organs with antibodies and nuclear stains was successfully adopted. Tissue clearing coupled with 3D immunostaining provides an unbiased approach to comprehensively evaluate drug treatment protocols, improve the understanding of the cellular organization of T. cruzi-infected tissues, and is expected to advance discoveries related to anti-T. cruzi immune responses, tissue damage, and repair in Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Mamíferos , Linfócitos T , Trypanosoma cruzi/fisiologia
12.
PLoS Negl Trop Dis ; 15(3): e0009141, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788859

RESUMO

Trypanosoma cruzi, the causative agent of human Chagas disease, is endemic to the southern region of the United States where it routinely infects many host species. The indoor/outdoor housing configuration used in many non-human primate research and breeding facilities in the southern of the USA provides the opportunity for infection by T. cruzi and thus provides source material for in-depth investigation of host and parasite dynamics in a natural host species under highly controlled and restricted conditions. For cynomolgus macaques housed at such a facility, we used a combination of serial blood quantitative PCR (qPCR) and hemoculture to confirm infection in >92% of seropositive animals, although each method alone failed to detect infection in >20% of cases. Parasite isolates obtained from 43 of the 64 seropositive macaques were of 2 broad genetic types (discrete typing units, (DTU's) I and IV); both within and between these DTU groupings, isolates displayed a wide variation in growth characteristics and virulence, elicited host immune responses, and susceptibility to drug treatment in a mouse model. Likewise, the macaques displayed a diversity in T cell and antibody response profiles that rarely correlated with parasite DTU type, minimum length of infection, or age of the primate. This study reveals the complexity of infection dynamics, parasite phenotypes, and immune response patterns that can occur in a primate group, despite being housed in a uniform environment at a single location, and the limited time period over which the T. cruzi infections were established.


Assuntos
Doença de Chagas/epidemiologia , Macaca fascicularis/parasitologia , Doenças dos Macacos/parasitologia , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/isolamento & purificação , Animais , Anticorpos Antiprotozoários/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Modelos Animais de Doenças , Feminino , Variação Genética/genética , Humanos , Masculino , Camundongos , Reação em Cadeia da Polimerase , Texas/epidemiologia , Trypanosoma cruzi/genética
13.
J Antimicrob Chemother ; 76(6): 1580-1592, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33693664

RESUMO

BACKGROUND: Interruption of benznidazole therapy due to the appearance of adverse effects, which is presumed to lead to treatment failure, is a major drawback in the treatment of chronic Chagas disease. METHODS: Trypanosoma cruzi-specific humoral and T cell responses, T cell phenotype and parasite load were measured to compare the outcome in 33 subjects with chronic Chagas disease treated with an incomplete benznidazole regimen and 58 subjects treated with the complete regimen, during a median follow-up period of 48 months. RESULTS: Both treatment regimens induced a reduction in the T. cruzi-specific antibody levels and similar rates of treatment failure when evaluated using quantitative PCR. Regardless of the regimen, polyfunctional CD4+ T cells increased in the subjects, with successful treatment outcome defined as a decrease of T. cruzi-specific antibodies. Regardless of the serological outcome, naive and central memory T cells increased after both regimens. A decrease in CD4+ HLA-DR+ T cells was associated with successful treatment in both regimens. The cytokine profiles of subjects with successful treatment showed fewer inflammatory mediators than those of the untreated T. cruzi-infected subjects. High levels of T cells expressing IL-7 receptor and low levels of CD8+ T cells expressing the programmed cell death protein 1 at baseline were associated with successful treatment following benznidazole interruption. CONCLUSIONS: These findings challenge the notion that treatment failure is the sole potential outcome of an incomplete benznidazole regimen and support the need for further assessment of the treatment protocols for chronic Chagas disease.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Humanos , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico
14.
medRxiv ; 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33532799

RESUMO

The SARS-CoV-2 pandemic and the vaccination effort that is ongoing has created an unmet need for accessible, affordable, flexible and precise platforms for monitoring the induction, specificity and maintenance of virus-specific immune responses. Herein we validate a multiplex (Luminex-based) assay capable of detecting SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type (e.g. plasma, serum, saliva or blood spots). The well-established precision of Luminex-based assays provides the ability to follow changes in antibody levels over time to many antigens, including multiple permutations of the most common SARS-CoV-2 antigens. This platform can easily measure antibodies known to correlate with neutralization activity as well as multiple non-SARS-CoV-2 antigens such as vaccines (e.g. Tetanus toxoid) or those from frequently encountered agents (influenza), which serve as stable reference points for quantifying the changing SARS-specific responses. All of the antigens utilized in our study can be made in-house, many in E. coli using readily available plasmids. Commercially sourced antigens may also be incorporated and newly available antigen variants can be rapidly produced and integrated, making the platform adaptable to the evolving viral strains in this pandemic.

15.
PLoS Pathog ; 17(1): e1009254, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508020

RESUMO

The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses. However, the highly repetitive nature of the genome-largely a result of these same extensive families of genes-have prevented a full understanding of the extent of gene diversity and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains representing the apparent ancestral lineages of the species. These assemblies reveal not only the full repertoire of the members of large gene families in the two strains, demonstrating extreme diversity within and between isolates, but also provide evidence of the processes that generate and maintain that diversity, including extensive gene amplification, dispersion of copies throughout the genome and diversification via recombination and in situ mutations. Gene amplification events also yield significant copy number variations in a substantial number of genes presumably not required for or involved in immune evasion, thus forming a second level of strain-dependent variation in this species. The extreme genome flexibility evident in T. cruzi also appears to create unique challenges with respect to preserving core genome functions and gene expression that sets this species apart from related kinetoplastids.


Assuntos
Doença de Chagas/parasitologia , Variações do Número de Cópias de DNA , Genoma de Protozoário/genética , Trypanosoma cruzi/genética , Evolução Molecular , Variação Genética , Humanos
16.
Sci Transl Med ; 12(567)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115952

RESUMO

A major contributor to treatment failure in Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is that current treatment regimens do not address the drug insensitivity of transiently dormant T. cruzi amastigotes. Here, we demonstrated that use of a currently available drug in a modified treatment regimen of higher individual doses, given less frequently over an extended treatment period, could consistently extinguish T. cruzi infection in three mouse models of Chagas disease. Once per week administration of benznidazole at a dose 2.5 to 5 times the standard daily dose rapidly eliminated actively replicating parasites and ultimately eradicated the residual, transiently dormant parasite population in mice. This outcome was initially confirmed in "difficult to cure" mouse infection models using immunological, parasitological, and molecular biological approaches and ultimately corroborated by whole organ analysis of optically clarified tissues using light sheet fluorescence microscopy (LSFM). This tool was effective for monitoring pathogen load in intact organs, including detection of individual dormant parasites, and for assessing treatment outcomes. LSFM-based analysis also suggested that dormant amastigotes of T. cruzi may not be fully resistant to trypanocidal compounds such as benznidazole. Collectively, these studies provide important information on the phenomenon of dormancy in T. cruzi infection in mice, demonstrate methods to therapeutically override dormancy using a currently available drug, and provide methods to monitor alternative therapeutic approaches for this, and possibly other, low-density infectious agents.


Assuntos
Doença de Chagas , Preparações Farmacêuticas , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Tripanossomicidas/uso terapêutico
17.
J Immunol ; 205(3): 573-578, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591392

RESUMO

Myocytes express low levels of MHC class I (MHC I), perhaps influencing the ability of CD8+ T cells to efficiently detect and destroy pathogens that invade muscle. Trypanosoma cruzi infects many cell types but preferentially persists in muscle, and we asked if this tissue-dependent persistence was linked to MHC expression. Inducible enhancement of skeletal muscle MHC I in mice during the first 20 d of T. cruzi infection resulted in enhanced CD8-dependent reduction of parasite load. However, continued overexpression of MHC I beyond 30 d ultimately led to a collapse of systemic parasite control associated with immune exhaustion, which was reversible in part by blocking PD-1:PD-L1 interactions. These studies demonstrate a surprisingly strong and systemically dominant effect of skeletal muscle MHC expression on maintaining T cell function and pathogen control and argue that the normally low MHC I expression in skeletal muscle is host protective by allowing for pathogen control while preventing immune exhaustion.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Fibras Musculares Esqueléticas/imunologia , Trypanosoma cruzi/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/patologia , Doença de Chagas/genética , Doença de Chagas/patologia , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/patologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-32571827

RESUMO

In a pilot study, we showed that the intermittent administration of benznidazole in chronic Chagas disease patients resulted in a low rate of treatment suspension and therapeutic failure, as assessed by quantitative PCR (qPCR) at the end of treatment. Here, a 3-year posttreatment follow-up study of the same cohort of patients is presented. The treatment scheme consisted of 12 doses of benznidazole at 5 mg/kg of body weight/day in two daily doses every 5 days. Parasite load, Trypanosoma cruzi-specific antibodies, and serum chemokine levels were measured prior to treatment and after a median follow-up of 36 months posttreatment by DNA minicircle kinetoplastid and nuclear DNA satellite sequence qPCR methods, conventional serological techniques, a Luminex-based assay with recombinant T. cruzi proteins, and a cytometric bead array. At the end of follow-up, 14 of 17 (82%) patients had negative qPCR findings, whereas three of 17 (18%) had detectable nonquantifiable findings by at least one of the qPCR techniques. A decline in parasite-specific antibodies at 12 months posttreatment was confirmed by conventional serological tests and the Luminex assays. Monocyte chemoattractant protein 1 levels increased after treatment, whereas monokine induced by gamma interferon levels decreased. New posttreatment electrocardiographic abnormalities were observed in only one patient who had cardiomyopathy prior to treatment. Together, these data strengthen our previous findings by showing that the intermittent administration of benznidazole results in a low rate of treatment suspension, with treatment efficacy comparable to that of a daily dose of 5 mg/kg for 60 days.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Seguimentos , Humanos , Nitroimidazóis/uso terapêutico , Projetos Piloto , Tripanossomicidas/uso terapêutico
19.
J Med Chem ; 62(22): 10362-10375, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31657555

RESUMO

Acylaminobenzothiazole hits were identified as potential inhibitors of Trypanosoma cruzi replication, a parasite responsible for Chagas disease. We selected compound 1 for lead optimization, aiming to improve in parallel its anti-T. cruzi activity (IC50 = 0.63 µM) and its human metabolic stability (human clearance = 9.57 mL/min/g). A total of 39 analogues of 1 were synthesized and tested in vitro. We established a multiparametric structure-activity relationship, allowing optimization of antiparasite activity, physicochemical parameters, and ADME properties. We identified compound 50 as an advanced lead with an improved anti-T. cruzi activity in vitro (IC50 = 0.079 µM) and an enhanced metabolic stability (human clearance = 0.41 mL/min/g) and opportunity for the oral route of administration. After tolerability assessment, 50 demonstrated a promising in vivo efficacy.


Assuntos
Doença de Chagas/tratamento farmacológico , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Administração Oral , Animais , Benzotiazóis/síntese química , Benzotiazóis/química , Cloro/química , Cães , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Microssomos Hepáticos/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/administração & dosagem , Tripanossomicidas/farmacocinética
20.
Nat Rev Microbiol ; 17(10): 607-620, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444481

RESUMO

Antimicrobial treatment failure threatens our ability to control infections. In addition to antimicrobial resistance, treatment failures are increasingly understood to derive from cells that survive drug treatment without selection of genetically heritable mutations. Parasitic protozoa, such as Plasmodium species that cause malaria, Toxoplasma gondii and kinetoplastid protozoa, including Trypanosoma cruzi and Leishmania spp., cause millions of deaths globally. These organisms can evolve drug resistance and they also exhibit phenotypic diversity, including the formation of quiescent or dormant forms that contribute to the establishment of long-term infections that are refractory to drug treatment, which we refer to as 'persister-like cells'. In this Review, we discuss protozoan persister-like cells that have been linked to persistent infections and discuss their impact on therapeutic outcomes following drug treatment.


Assuntos
Antiprotozoários/farmacologia , Tolerância a Medicamentos , Leishmania/efeitos dos fármacos , Plasmodium/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Variação Biológica da População , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Humanos , Leishmania/crescimento & desenvolvimento , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium/crescimento & desenvolvimento , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Falha de Tratamento , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA