Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0024324, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767355

RESUMO

Fosmids and cosmids are vectors frequently used in functional metagenomic studies. With a large insert capacity (around 30 kb) they can encode dozens of cloned genes or in some cases, entire biochemical pathways. Fosmids with cloned inserts can be transferred to heterologous hosts and propagated to enable screening for new enzymes and metabolites. After screening, fosmids from clones with an activity of interest must be de novo sequenced, a critical step toward the identification of the gene(s) of interest. In this work, we present a new approach for rapid and high-throughput fosmid sequencing directly from Escherichia coli colonies without liquid culturing or fosmid purification. Our sample preparation involves fosmid amplification with phi29 polymerase and then direct nanopore sequencing using the Oxford Nanopore Technologies system. We also present a bioinformatics pipeline termed "phiXXer" that facilitates both de novo read assembly and vector trimming to generate a linear sequence of the fosmid insert. Finally, we demonstrate the accurate sequencing of 96 fosmids in a single run and validate the method using two fosmid libraries that contain cloned large insert (~30-40 kb) genomic or metagenomic DNA.IMPORTANCELarge-insert clone (fosmids or cosmids) sequencing is challenging and arguably the most limiting step of functional metagenomic screening workflows. Our study establishes a new method for high-throughput nanopore sequencing of fosmid clones directly from lysed Escherichia coli cells. It also describes a companion bioinformatic pipeline that enables de novo assembly of fosmid DNA insert sequences. The devised method widens the potential of functional metagenomic screening by providing a simple, high-throughput approach to fosmid clone sequencing that dramatically speeds the pace of discovery.

2.
J Biol Chem ; 299(12): 105437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944617

RESUMO

The zwitterions phosphorylcholine (PC) and phosphoethanolamine (PE) are often found esterified to certain sugars in polysaccharides and glycoconjugates in a wide range of biological species. One such modification involves PC attachment to the 6-carbon of N-acetylglucosamine (GlcNAc-6-PC) in N-glycans and glycosphingolipids (GSLs) of parasitic nematodes, a modification that helps the parasite evade host immunity. Knowledge of enzymes involved in the synthesis and degradation of PC and PE modifications is limited. More detailed studies on such enzymes would contribute to a better understanding of the function of PC modifications and have potential application in the structural analysis of zwitterion-modified glycans. In this study, we used functional metagenomic screening to identify phosphodiesterases encoded in a human fecal DNA fosmid library that remove PC from GlcNAc-6-PC. A novel bacterial phosphodiesterase was identified and biochemically characterized. This enzyme (termed GlcNAc-PDase) shows remarkable substrate preference for GlcNAc-6-PC and GlcNAc-6-PE, with little or no activity on other zwitterion-modified hexoses. The identified GlcNAc-PDase protein sequence is a member of the large endonuclease/exonuclease/phosphatase superfamily where it defines a distinct subfamily of related sequences of previously unknown function, mostly from Clostridium bacteria species. Finally, we demonstrate use of GlcNAc-PDase to confirm the presence of GlcNAc-6-PC in N-glycans and GSLs of the parasitic nematode Brugia malayi in a glycoanalytical workflow.


Assuntos
Diester Fosfórico Hidrolases , Açúcares , Humanos , Diester Fosfórico Hidrolases/genética , Carboidratos , Glicoconjugados/química , Polissacarídeos/metabolismo , Acetilglucosamina/metabolismo
3.
PLoS One ; 18(7): e0286435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471401

RESUMO

We report here the first occurrence of an adenosine deaminase-related growth factor (ADGF) that deaminates adenosine 5' monophosphate (AMP) in preference to adenosine. The ADGFs are a group of secreted deaminases found throughout the animal kingdom that affect the extracellular concentration of adenosine by converting it to inosine. The AMP deaminase studied here was first isolated and biochemically characterized from the roman snail Helix pomatia in 1983. Determination of the amino acid sequence of the AMP deaminase enabled sequence comparisons to protein databases and revealed it as a member of the ADGF family. Cloning and expression of its cDNA in Pichia pastoris allowed the comparison of the biochemical characteristics of the native and recombinant forms of the enzyme and confirmed they correspond to the previously reported activity. Uncharacteristically, the H. pomatia AMP deaminase was determined to be dissimilar to the AMP deaminase family by sequence comparison while demonstrating similarity to the ADGFs despite having AMP as its preferred substrate rather than adenosine.


Assuntos
AMP Desaminase , Animais , Adenosina Desaminase/metabolismo , Adenosina/metabolismo , Moluscos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Monofosfato de Adenosina
4.
Anal Chem ; 95(24): 9280-9287, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37290223

RESUMO

Complete O-glycosite characterization, including identification of the peptides, localization of the glycosites, and mapping of the glycans, has been a persistent challenge in O-glycoproteomics owing to the technical challenges surrounding O-glycan analysis. Multi-glycosylated peptides pose an even greater challenge owing to their potential heterogeneity. Ultraviolet photodissociation (UVPD) can localize multiple post-translational modifications and is well-suited for the characterization of glycans. Three glycoproteins were assessed based on a strategy combining the use of O-glycoprotease IMPa and HCD-triggered UVPD for the complete characterization of O-glycopeptides. This approach localized multiple adjacent or proximal O-glycosites on individual glycopeptides and identified a previously unknown glycosite on etanercept at S218. Nine different glycoforms were characterized as a multi-glycosylated peptide from etanercept. The performance of UVPD was compared to that of HCD and EThcD for the localization of O-glycosites and the characterization of the constituent peptides and glycans.


Assuntos
Glicopeptídeos , Peptídeos , Glicopeptídeos/química , Etanercepte , Glicosilação , Polissacarídeos
5.
Commun Biol ; 6(1): 48, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639722

RESUMO

N-glycosylation is implicated in cancers and aberrant N-glycosylation is recognized as a hallmark of cancer. Here, we mapped and compared the site-specific N-glycoproteomes of colon cancer HCT116 cells and isogenic non-tumorigenic DNMT1/3b double knockout (DKO1) cells using Fbs1-GYR N-glycopeptide enrichment technology and trapped ion mobility spectrometry. Many significant changes in site-specific N-glycosylation were revealed, providing a molecular basis for further elucidation of the role of N-glycosylation in protein function. HCT116 cells display hypersialylation especially in cell surface membrane proteins. Both HCT116 and DKO1 show an abundance of paucimannose and 80% of paucimannose-rich proteins are annotated to reside in exosomes. The most striking N-glycosylation alteration was the degree of mannose-6-phosphate (M6P) modification. N-glycoproteomic analyses revealed that HCT116 displays hyper-M6P modification, which was orthogonally validated by M6P immunodetection. Significant observed differences in N-glycosylation patterns of the major M6P receptor, CI-MPR in HCT116 and DKO1 may contribute to the hyper-M6P phenotype of HCT116 cells. This comparative site-specific N-glycoproteome analysis provides a pool of potential N-glycosylation-related cancer biomarkers, but also gives insights into the M6P pathway in cancer.


Assuntos
Manosefosfatos , Neoplasias , Humanos , Glicosilação , Manosefosfatos/química , Manosefosfatos/metabolismo , Neoplasias/genética
6.
Sci Rep ; 12(1): 15763, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131114

RESUMO

Serum N-glycan profiling studies during the past decades have shown robust associations between N-glycan changes and various biological conditions, including infections, in humans. Similar studies are scarcer for other mammals, despite the tremendous potential of serum N-glycans as biomarkers for infectious diseases in animal models of human disease and in the veterinary context. To expand the knowledge of serum N-glycan profiles in important mammalian model systems, in this study, we combined MALDI-TOF-MS analysis and HILIC-UPLC profiling of released N-glycans together with glycosidase treatments to characterize the glycan structures present in rhesus macaque serum. We used this baseline to monitor changes in serum N-glycans during infection with Brugia malayi, a parasitic nematode of humans responsible for lymphatic filariasis, in a longitudinal cohort of infected rhesus macaques. Alterations of the HILIC-UPLC profile, notably of abundant structures, became evident as early as 5 weeks post-infection. Given its prominent role in the immune response, contribution of immunoglobulin G to serum N-glycans was investigated. Finally, comparison with similar N-glycan profiling performed during infection with the dog heartworm Dirofilaria immitis suggests that many changes observed in rhesus macaque serum N-glycans are specific for lymphatic filariasis.


Assuntos
Brugia Malayi , Dirofilaria immitis , Filariose Linfática , Animais , Biomarcadores , Dirofilaria immitis/fisiologia , Cães , Filariose Linfática/parasitologia , Glicosídeo Hidrolases , Humanos , Imunoglobulina G , Macaca mulatta , Mamíferos , Polissacarídeos
7.
Mol Cell Proteomics ; 21(5): 100201, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065273

RESUMO

Millions of people worldwide are infected with filarial nematodes, responsible for lymphatic filariasis (LF) and other diseases causing chronic disablement. Elimination programs have resulted in a substantial reduction of the rate of infection in certain areas creating a need for improved diagnostic tools to establish robust population surveillance and avoid LF resurgence. Glycans from parasitic helminths are emerging as potential antigens for use in diagnostic assays. However, despite its crucial role in host-parasite interactions, filarial glycosylation is still largely, structurally, and functionally uncharacterized. Therefore, we investigated the glycan repertoire of the filarial nematode Brugia malayi. Glycosphingolipid and N-linked glycans were extracted from several life-stages using enzymatic release and characterized using a combination of MALDI-TOF-MS and glycan sequencing techniques. Next, glycans were purified by HPLC and printed onto microarrays to assess the host anti-glycan antibody response. Comprehensive glycomic analysis of B. malayi revealed the presence of several putative antigenic motifs such as phosphorylcholine and terminal glucuronic acid. Glycan microarray screening showed a recognition of most B. malayi glycans by immunoglobulins from rhesus macaques at different time points after infection, which permitted the characterization of the dynamics of anti-glycan immunoglobulin G and M during the establishment of brugian filariasis. A significant level of IgG binding to the parasite glycans was also detected in infected human plasma, while IgG binding to glycans decreased after anthelmintic treatment. Altogether, our work identifies B. malayi glycan antigens and reveals antibody responses from the host that could be exploited as potential markers for LF.


Assuntos
Brugia Malayi , Filariose Linfática , Animais , Filariose Linfática/diagnóstico , Filariose Linfática/parasitologia , Humanos , Imunoglobulina G , Macaca mulatta , Polissacarídeos
8.
Protein Expr Purif ; 190: 105987, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34637916

RESUMO

Combinations of ribonucleases (RNases) are commonly used to digest RNA into oligoribonucleotide fragments prior to liquid chromatography-mass spectrometry (LC-MS) analysis. The distribution of the RNase target sequences or nucleobase sites within an RNA molecule is critical for achieving a high mapping coverage. Cusativin and MC1 are nucleotide-specific endoribonucleases encoded in the cucumber and bitter melon genomes, respectively. Their high specificity for cytidine (Cusativin) and uridine (MC1) make them ideal molecular biology tools for RNA modification mapping. However, heterogenous recombinant expression of either enzyme has been challenging because of their high toxicity to expression hosts and the requirement of posttranslational modifications. Here, we present two highly efficient and time-saving protocols that overcome these hurdles and enhance the expression and purification of these RNases. We first purified MC1 and Cusativin from bacteria by expressing and shuttling both enzymes to the periplasm as MBP-fusion proteins in T7 Express lysY/IqE. coli strain at low temperature. The RNases were enriched using amylose affinity chromatography, followed by a subsequent purification via a C-terminal 6xHIS tag. This fast, two-step purification allows for the purification of highly active recombinant RNases significantly surpassing yields reported in previous studies. In addition, we expressed and purified a Cusativin-CBD fusion enzyme in P. pastoris using chitin magnetic beads. Both Cusativin variants exhibited a similar sequence preference, suggesting that neither posttranslational modifications nor the epitope-tags have a substantial effect on the sequence specificity of the enzyme.


Assuntos
Endorribonucleases , Escherichia coli , Expressão Gênica , Ribonucleases , Endorribonucleases/biossíntese , Endorribonucleases/química , Endorribonucleases/genética , Endorribonucleases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Ribonucleases/biossíntese , Ribonucleases/química , Ribonucleases/genética , Ribonucleases/isolamento & purificação
9.
Methods Mol Biol ; 2370: 3-23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611862

RESUMO

Glycosylation is important in biology, contributing to both protein conformation and function. Structurally, glycosylation is complex and diverse. This complexity is reflected in the topology, composition, monosaccharide linkages, and isomerism of each oligosaccharide. Glycoanalytics is a discipline that addresses the understanding and characterization of this complexity and its correlation with biology. It includes analytical steps such as sample preparation, instrument measurements, and data analyses. Of these, data analysis has emerged as a critical bottleneck because data collection has increasingly become high-throughput. This has resulted in data-rich workflows that lack rapid and automated data analytics. To address this issue, the field has been developing software for interpretation of quantitative glycomics studies. Here, we describe a protocol using available informatics tools for analysis of data from analysis of released glycans using high-/ultraperformance liquid chromatography (H/UPLC) coupled with mass spectrometry (MS).


Assuntos
Glicômica , Cromatografia Líquida de Alta Pressão , Glicosilação , Espectrometria de Massas , Polissacarídeos
10.
Appl Environ Microbiol ; 88(2): e0213721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788065

RESUMO

It has been predicted that 30 to 80% of archaeal genomes remain annotated as hypothetical proteins with no assigned gene function. Further, many archaeal organisms are difficult to grow or are unculturable. To overcome these technical and experimental hurdles, we developed a high-throughput functional genomics screen that utilizes capillary electrophoresis (CE) to identify nucleic acid modifying enzymes based on activity rather than sequence homology. Here, we describe a functional genomics screening workflow to find DNA modifying enzyme activities encoded by the hyperthermophile Thermococcus kodakarensis (T. kodakarensis). Large DNA insert fosmid libraries representing an ∼5-fold average coverage of the T. kodakarensis genome were prepared in Escherichia coli. RNA-seq showed a high fraction (84%) of T. kodakarensis genes were transcribed in E. coli despite differences in promoter structure and translational machinery. Our high-throughput screening workflow used fluorescently labeled DNA substrates directly in heat-treated lysates of fosmid clones with capillary electrophoresis detection of reaction products. Using this method, we identified both a new DNA endonuclease activity for a previously described RNA endonuclease (Nob1) and a novel AP lyase DNA repair enzyme family (termed 'TK0353') that is found only in a small subset of Thermococcales. The screening methodology described provides a fast and efficient way to explore the T. kodakarensis genome for a variety of nucleic acid modifying activities and may have implications for similar exploration of enzymes and pathways that underlie core cellular processes in other Archaea. IMPORTANCE This study provides a rapid, simple, high-throughput method to discover novel archaeal nucleic acid modifying enzymes by utilizing a fosmid genomic library, next-generation sequencing, and capillary electrophoresis. The method described here provides the details necessary to create 384-well fosmid library plates from Thermococcus kodakarensis genomic DNA, sequence 384-well fosmids plates using Illumina next-generation sequencing, and perform high-throughput functional read-out assays using capillary electrophoresis to identify a variety of nucleic acid modifying activities, including DNA cleavage and ligation. We used this approach to identify a new DNA endonuclease activity for a previously described RNA endonuclease (Nob1) and identify a novel AP lyase enzyme (TK0353) that lacks sequence homology to known nucleic acid modifying enzymes.


Assuntos
Proteínas Arqueais , Thermococcus , Proteínas Arqueais/metabolismo , DNA Arqueal/genética , DNA Arqueal/metabolismo , Eletroforese Capilar , Escherichia coli/genética , Escherichia coli/metabolismo , Genômica
11.
Anal Chem ; 94(2): 1060-1069, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34962767

RESUMO

Characterization of mucin-type O-glycans linked to serine/threonine of glycoproteins is technically challenging, in part, due to a lack of effective enzymatic tools that enable their analysis. Recently, several O-glycan-specific endoproteases that can cleave the protein adjacent to the appended glycan have been described. Despite significant progress in understanding the biochemistry of these enzymes, known O-glycoproteases have specificity constraints, such as inefficient cleavage of glycoproteins bearing sialylated O-glycans, high selectivity for certain types of glycoproteins, or protein sequence bias. These factors limit their analytical application. In this study, we examined the capabilities of an immunomodulating metalloprotease (IMPa) from Pseudomonas aeruginosa. Peptide sequence selectivity and its impact on IMPa activity were interrogated using an array of synthetic peptides and their glycoforms. We show that IMPa has no specific P1 residue preference and can tolerate most amino acids at the P1 position, except aspartic acid. The enzyme does not cleave between two adjacent O-glycosites, indicating that O-glycosylated serine/threonine is not allowed at position P1. Glycopeptides with as few as two amino acids on either side of an O-glycosite were cleaved by IMPa. Finally, IMPa efficiently cleaved peptides and proteins carrying sialylated and asialylated O-glycans of varying complexity. We present the use of IMPa in a one-step O-glycoproteomic workflow for glycoprofiling of the purified glycoproteins granulocyte colony-stimulating factor and receptor-type tyrosine-protein phosphatase C without the need for glycopeptide enrichment. In these examples, IMPa enabled both the identification of O-glycosites and the range of complex O-glycan structures at each site.


Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Polissacarídeos
12.
Microb Cell Fact ; 20(1): 162, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419057

RESUMO

BACKGROUND: Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS: Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION: The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.


Assuntos
Acetilglucosamina/metabolismo , Enzimas/isolamento & purificação , Enzimas/metabolismo , Metagenômica/métodos , Polissacarídeos/química , Polissacarídeos/metabolismo , Sulfatos/metabolismo , Enzimas/genética , Cinética , Sulfatos/química
13.
Glycobiology ; 31(9): 1062-1067, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34132802

RESUMO

Protein glycosylation is the attachment of a carbohydrate moiety to a protein backbone affecting both structure and function of the protein. Abnormal glycosylation is associated with various diseases, and some of the changes in glycosylation are detectable even before symptom development. As such, glycans have emerged as compelling new biomarker candidates. A wide range of analytical methods exist for small-scale glycan analyses. However, there is a growing need for highly robust and reproducible high-throughput techniques that allow for large-scale glycoprofiling. Here, we describe the evaluation of robustness and repeatability of immunoglobulin G (IgG) N-glycan analysis using the GlycoWorks RapiFluor-MS N-Glycan Kit followed by hydrophilic interaction ultra-high-performance liquid chromatography (HILIC-UHPLC) from 335 technical replicates of human plasma randomly distributed across 67 96-well plates. The data was collected over a 5-month period using multiple UHPLC systems and chromatographic columns. Following relative IgG N-glycan quantification in acquired chromatograms, data analysis showed that the most abundant peaks that together made up for three-fourths of the detected IgG N-glycome all had coefficients of variation (CVs) lower than 2%. The highest CVs ranging from 16 to 29% accompanied low abundance glycan peaks with the individual relative peak area below 1% that together made up for <2% of the detected IgG N-glycome. These results show that the tested method is very robust and repeatable, making it suitable for the IgG N-glycan analysis of a large number of samples in a high-throughput manner over a longer period of time.


Assuntos
Glicômica , Imunoglobulina G , Cromatografia Líquida de Alta Pressão/métodos , Glicômica/métodos , Glicosilação , Humanos , Imunoglobulina G/química , Polissacarídeos/metabolismo
14.
Sci Rep ; 11(1): 160, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420304

RESUMO

The BLL lectin from the edible Japanese "Kurokawa" mushroom (Boletopsis leucomelaena) was previously reported to bind to N-glycans harboring terminal N-acetylglucosamine (GlcNAc) and to induce apoptosis in a leukemia cell line. However, its gene has not been reported. In this study, we used a transcriptomics-based workflow to identify a full-length transcript of a BLL functional ortholog (termed BGL) from Boletopsis grisea, a close North American relative of B. leucomelaena. The deduced amino acid sequence of BGL was an obvious member of fungal fruit body lectin family (Pfam PF07367), a highly conserved group of mushroom lectins with a preference for binding O-glycans harboring the Thomsen-Friedenreich antigen (TF-antigen; Galß1,3GalNAc-α-) and having two ligand binding sites. Functional characterization of recombinant BGL using glycan microarray analysis and surface plasmon resonance confirmed its ability to bind both the TF-antigen and ß-GlcNAc-terminated N-glycans. Structure-guided mutagenesis of BGL's two ligand binding clefts showed that one site is responsible for binding TF-antigen structures associated with O-glycans, whereas the second site specifically recognizes N-glycans with terminal ß-GlcNAc. Additionally, the two sites show no evidence of allosteric communication. Finally, mutant BGL proteins having single functional bindings site were used to enrich GlcNAc-capped N-glycans or mucin type O-glycopeptides from complex samples in glycomics and glycoproteomics analytical workflows.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Lectinas/metabolismo , Agaricales/química , Agaricales/genética , Agaricales/metabolismo , Sequência de Aminoácidos , Basidiomycota/química , Basidiomycota/genética , Sítios de Ligação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Lectinas/química , Lectinas/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Alinhamento de Sequência
15.
Nat Commun ; 10(1): 4816, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645552

RESUMO

Sialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry. We show that a recently discovered sialidase family, whose first member EnvSia156 was isolated from hot spring metagenomes, defines an unusual structural fold and active centre constellation, not previously described in sialidases. Consistent with an inverting mechanism, EnvSia156 reveals a His/Asp active center in which the His acts as a Brønsted acid and Asp as a Brønsted base in a single-displacement mechanism. A predominantly hydrophobic aglycone site facilitates accommodation of a variety of 2-linked sialosides; a versatility that offers the potential for glycan hydrolysis across a range of biological and technological platforms.


Assuntos
Domínio Catalítico , Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Cristalografia por Raios X , Glicocálix/metabolismo , Neuraminidase/ultraestrutura , Estrutura Terciária de Proteína
16.
Nat Microbiol ; 4(12): 2082-2089, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548686

RESUMO

Dietary habits have been associated with alterations of the human gut resident microorganisms contributing to obesity, diabetes and cancer1. In Western diets, red meat is a frequently eaten food2, but long-term consumption has been associated with increased risk of disease3,4. Red meat is enriched in N-glycolylneuraminic acid (Neu5Gc) that cannot be synthesized by humans5. However, consumption can cause Neu5Gc incorporation into cell surface glycans6, especially in carcinomas4,7. As a consequence, an inflammatory response is triggered when Neu5Gc-containing glycans encounter circulating anti-Neu5Gc antibodies8,9. Although bacteria can use free sialic acids as a nutrient source10-12, it is currently unknown if gut microorganisms contribute to releasing Neu5Gc from food. We found that a Neu5Gc-rich diet induces changes in the gut microbiota, with Bacteroidales and Clostridiales responding the most. Genome assembling of mouse and human shotgun metagenomic sequencing identified bacterial sialidases with previously unobserved substrate preference for Neu5Gc-containing glycans. X-ray crystallography revealed key amino acids potentially contributing to substrate preference. Additionally, we verified that mouse and human sialidases were able to release Neu5Gc from red meat. The release of Neu5Gc from red meat using bacterial sialidases could reduce the risk of inflammatory diseases associated with red meat consumption, including colorectal cancer4 and atherosclerosis13.


Assuntos
Bactérias/enzimologia , Dieta , Microbioma Gastrointestinal , Ácidos Neuramínicos/metabolismo , Neuraminidase/genética , Polissacarídeos/metabolismo , Carne Vermelha/análise , Animais , Bactérias/classificação , Bacteroides/enzimologia , Bacteroides/genética , Clostridiales/enzimologia , Clostridiales/genética , Cristalografia por Raios X , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Neuraminidase/metabolismo , Polissacarídeos/química
17.
PLoS One ; 14(9): e0216849, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513600

RESUMO

Further characterization of essential systems in the parasitic filarial nematode Brugia malayi is needed to better understand its biology, its interaction with its hosts, and to identify critical components that can be exploited to develop novel treatments. The production of glycophosphatidylinositol-anchored proteins (GPI-APs) is essential for eukaryotic cellular and physiological function. In addition, GPI-APs perform many important roles for cells. In this study, we characterized the B. malayi GPI-anchored proteome using both computational and experimental approaches. We used bioinformatic strategies to show the presence or absence of B. malayi GPI-AP biosynthetic pathway genes and to compile a putative B. malayi GPI-AP proteome using available prediction programs. We verified these in silico analyses using proteomics to identify GPI-AP candidates prepared from the surface of intact worms and from membrane enriched extracts. Our study represents the first description of the GPI-anchored proteome in B. malayi and lays the groundwork for further exploration of this essential protein modification as a target for novel anthelmintic therapeutic strategies.


Assuntos
Brugia Malayi/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Helminto/metabolismo , Proteoma , Proteômica , Animais , Vias Biossintéticas , Brugia Malayi/genética , Cromatografia Líquida , Filariose/parasitologia , Humanos , Biossíntese de Proteínas , Proteômica/métodos , Espectrometria de Massas em Tandem
18.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053583

RESUMO

The yeast Kluyveromyces lactis has been a successful host for the production of heterologous proteins for over 30 years. Currently, the galactose-/lactose-inducible and glucose-repressible LAC4 promoter (P LAC4 ) is the most widely used promoter to drive recombinant protein expression in K. lactis However, P LAC4 is not fully repressed in the presence of glucose and significant protein expression still occurs. Thus, P LAC4 is not suitable in processes where tight regulation of heterologous gene expression is required. In this study, we devised a novel K. lactis promoter system that is both strong and tightly controllable. We first tested several different endogenous K. lactis promoters for their ability to express recombinant proteins. A novel hybrid promoter (termed P350) was created by combining segments of two K. lactis promoters, namely, the strong constitutive P GAP1 promoter and the carbon source-sensitive P ICL1 promoter. We demonstrate that P350 is tightly repressed in the presence of glucose or glycerol and becomes derepressed upon depletion of these compounds by the growing cells. We further illustrate the utility of P350-controlled protein expression in shake flask and high-cell-density bioreactor cultivation strategies. The P350 hybrid promoter is a strong derepressible promoter for use in autoinduction of one-step fermentation processes for the production of heterologous proteins in K. lactisIMPORTANCE The yeast Kluyveromyces lactis is an important host for the expression of recombinant proteins at both laboratory and industrial scales. However, the system lacks a tightly regulated promoter that permits controlled expression of heterologous proteins. In this study, we report the engineering of a highly regulated strong hybrid promoter (termed P350) for use in K. lactis P350 is tightly repressed by glucose or glycerol in the medium but strongly promotes gene expression once the carbon source has been consumed by the cells. This feature permits heterologous protein expression to be "autoinduced" at any scale without the addition of a gratuitous inducer molecule or changing feed solutions.


Assuntos
Proteínas Fúngicas/genética , Expressão Gênica , Kluyveromyces/genética , Regiões Promotoras Genéticas , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Bioinformatics ; 35(4): 688-690, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30101321

RESUMO

SUMMARY: Many eukaryotic proteins are modified by N-glycans. Liquid chromatography (ultra-performance -UPLC and high-performance-HPLC) coupled with mass spectrometry (MS) is conventionally used to characterize N-glycan structures. Software can automatically assign glycan structures by matching their observed retention times and masses with standardized values in reference databases. However, more precise confirmation of N-glycan structures can be derived using exoglycosidases, enzymes that remove specific monosaccharides from glycans. Exoglycosidase removal of monosaccharides results in signature peak shifts, in both UPLC and MS1, yielding an effective way to verify N-glycan structure with high detail (down to the position and isomeric linkage of each monosaccharide). Because manual interpretation of exoglycosidase data is complex and time consuming, we developed GlycanAnalyzer, a web application that pattern matches N-glycan peak shifts following exoglycosidase digestion and automates structure assignments. GlycanAnalyzer significantly improves assignment accuracy over other auto-assignment methods on tests with a monoclonal antibody and four glycan standards (100% versus 82% for the next best software). By automating data interpretation, GlycanAnalyzer enables the easier use of exoglycosidases to precisely define N-glycan structure. AVAILABILITY AND IMPLEMENTATION: http://glycananalyzer.neb.com. Datasets available online. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Glicosídeo Hidrolases/química , Polissacarídeos/química , Software , Cromatografia Líquida de Alta Pressão , Internet , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA