Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(4): 1521-1537, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665668

RESUMO

The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.

2.
Mar Drugs ; 22(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393059

RESUMO

Anithiactin D (1), a 2-phenylthiazole class of natural products, was isolated from marine mudflat-derived actinomycetes Streptomyces sp. 10A085. The chemical structure of 1 was elucidated based on the interpretation of NMR and MS data. The absolute configuration of 1 was determined by comparing the experimental and calculated electronic circular dichroism (ECD) spectral data. Anithiactin D (1) significantly decreased cancer cell migration and invasion activities at a concentration of 5 µM via downregulation of the epithelial-to-mesenchymal transition (EMT) markers in A549, AGS, and Caco-2 cell lines. Moreover, 1 inhibited the activity of Rho GTPases, including Rac1 and RhoA in the A549 cell line, suppressed RhoA in AGS and Caco-2 cell lines, and decreased the mRNA expression levels of some matrix metalloproteinases (MMPs) in AGS and Caco-2 cell lines. Thus 1, which is a new entity of the 2-phenylthiazole class of natural products with a unique aniline-indole fused moiety, is a potent inhibitor of the motility of cancer cells.


Assuntos
Neoplasias , Streptomyces , Humanos , Linhagem Celular Tumoral , Células CACO-2 , Streptomyces/metabolismo , Células A549 , Proteínas rho de Ligação ao GTP/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal
3.
Heliyon ; 9(9): e19185, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662726

RESUMO

Lung cancer has the highest mortality rates worldwide. The disease is caused by environmental pollutants, smoking, and many other factors. Recent treatments include immunotherapeutics, which have shown some success; however, the search for new therapeutics is ongoing. Endolichenic fungi produce a whale of a lot of secondary metabolites, the therapeutic effects of which are being evaluated. Here, we used a crude extract and subfractions of the endolichenic fungus, Phoma sp. (EL006848), isolated from the Pseudevernia furfuracea. It was identified the fatty acid components, palmitic acid, stearic acid, and oleic acid, exist in subfractions E1 and E2. In addition, EL006848 and its fatty acids fractions suppressed benzo[a]pyrene (an AhR ligand)- induced expression of PD-L1 to inhibit the activity of multiple immune checkpoints. E2 subfraction, which had a higher fatty acid content than E1, downregulated expression of AhR/ARNT and several human transcription factors related to ESR1. Moreover, E2 showed a strong inhibitory effect on STAT3 expression and mild effect on NF-kB activity. These results suggest that fatty acids extracted from an endolichenic fungus can exert strong immunotherapeutic effects.

4.
ACS Omega ; 8(13): 12548-12557, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033794

RESUMO

Endolichenic fungi (ELF) produce specialized metabolites that have various medicinal properties. Inhibition of tumor angiogenesis efficaciously suppresses many types of cancer. This study aimed to discover novel antiangiogenic agents from specialized metabolite extracts of ELF strains isolated from Korean lichens. The EtOAc extracts of 51 ELF strains were subjected to a screening pipeline consisting of cell viability, scratch wound healing, and Transwell migration assays. The EtOAc extract of Arthrinium sp. EL000127 showed the most potent inhibitory activity against the chemotactic migration of human umbilical vein endothelial cells (HUVEC). Targeted isolation on the major LC-MS peaks exhibited a previously known phthalide, 3-O-methylcyclopolic acid (1), and two unknown analogues of 1, 3-O-phenylethylcyclopolic acid (2) and 3-O-p-hydroxyphenylethylcyclopolic acid (3). The structures were characterized by MS and NMR analyses. All the isolates were acquired and applied to bioassays as racemates due to spontaneous racemization. Among the isolates, compound 3 effectively inhibits HUVEC motility by suppressing mRNA expressions of genes regulating epithelial cell survival and motility, which suggested that compound 3 is a potent antiangiogenic agent suitable for further exploration as a potential novel therapeutic against cancers.

5.
Mar Drugs ; 21(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976200

RESUMO

Marinobazzanan (1), a new bazzanane-type sesquiterpenoid, was isolated from a marine-derived fungus belonging to the genus Acremonium. The chemical structure of 1 was elucidated using NMR and mass spectroscopic data, while the relative configurations were established through the analysis of NOESY data. The absolute configurations of 1 were determined by the modified Mosher's method as well as vibrational circular dichroism (VCD) spectra calculation and it was determined as 6R, 7R, 9R, and 10R. It was found that compound 1 was not cytotoxic to human cancer cells, including A549 (lung cancer), AGS (gastric cancer), and Caco-2 (colorectal cancer) below the concentration of 25 µM. However, compound 1 was shown to significantly decrease cancer-cell migration and invasion and soft-agar colony-formation ability at concentrations ranging from 1 to 5 µM by downregulating the expression level of KITENIN and upregulating the expression level of KAI1. Compound 1 suppressed ß-catenin-mediated TOPFLASH activity and its downstream targets in AGS, A549, and Caco-2 and slightly suppressed the Notch signal pathway in three cancer cells. Furthermore, 1 also reduced the number of metastatic nodules in an intraperitoneal xenograft mouse model.


Assuntos
Antineoplásicos , Sesquiterpenos , Humanos , Animais , Camundongos , Células CACO-2 , Transformação Celular Neoplásica , Antineoplásicos/química , Movimento Celular , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
6.
Sci Rep ; 13(1): 2811, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797277

RESUMO

Endolichenic fungi are host organisms that live on lichens and produce a wide variety of secondary metabolites. Colorectal cancer stem cells are capable of self-renewal and differentiation into cancer cells, which makes cancers difficult to eradicate. New alternative therapeutics are needed to inhibit the growth of tumor stem cells. This study examined the ability of an extract of Jackrogersella sp. EL001672 (derived from the lichen Cetraria sp.) and the isolated compound 1'-O-methyl-averantin to inhibit development of cancer stemness. The endolichenic fungus Jackrogersella sp. EL001672 (KACC 83021BP), derived from Cetraria sp., was grown in culture medium. The culture broth was extracted with acetone to obtain a crude extract. Column chromatography and reverse-phase HPLC were used to isolate an active compound. The anticancer activity of the extract and the isolated compound was evaluated by qRT-PCR and western blotting, and in cell viability, spheroid formation, and reporter assays. The acetone extract of EL001672 did not affect cell viability. However, 1'-O-methyl-averantin showed cytotoxic effects against cancer cell lines at 50 µg/mL and 25 µg/mL. Both the crude extract and 1'-O-methyl-averantin suppressed spheroid formation in CRC cell lines, and downregulated expression of stemness markers ALDH1, CD44, CD133, Lgr-5, Msi-1, and EphB1. To further characterize the mechanism underlying anti-stemness activity, we examined sonic Hedgehog and Notch signaling. The results showed that the crude extract and the 1'-O-methyl-averantin inhibited Gli1, Gli2, SMO, Bmi-1, Notch-1, Hes-1, and the CSL complex. Consequently, an acetone extract and 1'-O-methyl-averantin isolated from EL001672 suppresses colorectal cancer stemness by regulating the sonic Hedgehog and Notch signaling pathways.


Assuntos
Neoplasias Colorretais , Líquens , Xylariales , Humanos , Proteínas Hedgehog/metabolismo , Acetona/metabolismo , Líquens/metabolismo , Xylariales/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
7.
Cancers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672439

RESUMO

Colorectal cancer (CRC) is the third most deadly type of cancer in the world and continuous investigations are required to discover novel therapeutics for CRC. Induction of apoptosis is one of the promising strategies to inhibit cancers. Here, we have identified a novel compound, Libertellenone T (B), isolated from crude extracts of the endolichenic fungus from Pseudoplectania sp. (EL000327) and investigated the mechanism of action. CRC cells treated by B were subjected to apoptosis detection assays, immunofluorescence imaging, and molecular analyses such as immunoblotting and QRT-PCR. Our findings revealed that B induced CRC cell death via multiple mechanisms including G2/M phase arrest caused by microtubule stabilization and caspase-dependent apoptosis. Further studies revealed that B induced the generation of reactive oxygen species (ROS) attributed to activating the JNK signaling pathway by which apoptosis and autophagy was induced in Caco2 cells. Moreover, B exhibited good synergistic effects when combined with the well-known anticancer drug, 5-FU, and another cytotoxic novel compound D, which was isolated from the same crude extract of EL000327. Overall, Libertellenone T induces G2/M phase arrest, apoptosis, and autophagy via activating the ROS/JNK pathway in CRC. Thus, B may be a potential anticancer therapeutic against CRC that is suitable for clinical applications.

8.
Front Pharmacol ; 13: 986946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160406

RESUMO

Background: Endolichenic fungi (ELF), which live the inside the lichen thallus, contain many secondary metabolites that show various biological activities. Recent studies show that lichen and ELF secondary metabolites have antioxidant, antibacterial, antifungal, cytotoxic, and anticancer activities. Purpose: Here, the effects of an ELF extract and its bioactive compounds were investigated on the H1975 cell line focusing on immune checkpoint marker inhibition. Methods: An ELF was isolated from the host lichen Bryoria fuscescens (Gyelnik) Brodo and D. Hawksw and identified the species as Nemania sp. EL006872. The fungus was cultured on agar medium and acetonic extracts were obtained. Secondary metabolites radianspenes C and D, and dahliane D, were isolated from the crude extract. The biological effects of both the crude extract and the isolated secondary metabolites were evaluated in cell viability, qRT-PCR assays, flow cytometry analysis and western blotting. Results: The cell viability assay revealed that extracts from Nemania sp. EL006872 and the isolated secondary compounds had low cytotoxicity. The crude extract, radianspenes C and D, and dahliane D, suppressed expression of mRNA encoding PD-L1 and aromatic hydrocarbon receptor (AhR), and surface expression of PD-L1 protein by cells exposed to benzo[a] pyrene. Radianspenes C and D, and dahliane D, reduced expression of AhR, PD-L1, ICOSL, and GITRL proteins by H1975 lung cancer cells, as well as exerting anti-proliferative effects. Conclusion: Radianspenes C and D, and dahliane D, bioactive compounds isolated from Nemania sp. EL006872 ELF, have the potential for use as immunotherapy and immunoncology treatments.

9.
Phytomedicine ; 91: 153674, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333327

RESUMO

BACKGROUND: Physciosporin (PHY) is one of the potent anticancer lichen compound. Recently, PHY was shown to suppress colorectal cancer cell proliferation, motility, and tumorigenesis through novel mechanisms of action. PURPOSE: We investigated the effects of PHY on energy metabolism and tumorigenicity of the human breast cancer (BC) cells MCF-7 (estrogen and progesterone positive BC) and MDA-MB-231 (triple negative BC). METHODS: The anticancer effect of PHY on cell viability, motility, cancer metabolism and tumorigenicity was evaluated by MTT assay, migration assay, clonogenic assay, anchorage-independent colony formation assay, glycolytic and mitochondrial metabolism analysis, qRT-PCR, flow cytometric analysis, Western blotting, immunohistochemistry in vitro; and by tumorigenicity study with orthotopic breast cancer xenograft model in vivo. RESULTS: PHY markedly inhibited BC cell viability. Cell-cycle profiling and Annexin V-FITC/PI double staining showed that a toxic dosage of PHY triggered apoptosis in BC cell lines by regulating the B-cell lymphoma-2 (Bcl-2) family proteins and the activity of caspase pathway. At non-toxic concentrations, PHY potently decreased migration, proliferation, and tumorigenesis of BC cells in vitro. Metabolic studies revealed that PHY treatment significantly reduced the bioenergetic profile by decreasing respiration, ATP production, and glycolysis capacity. In addition, PHY significantly altered the levels of mitochondrial (PGC-1α) and glycolysis (GLUT1, HK2 and PKM2) markers, and downregulated transcriptional regulators involved in cancer cell metabolism, including ß-catenin, c-Myc, HIF-1α, and NF-κB. An orthotopic implantation mouse model of BC confirmed that PHY treatment suppressed BC growth in vivo and target genes were consistently suppressed in tumor specimens. CONCLUSION: The findings from our in vitro as well as in vivo studies exhibit that PHY suppresses energy metabolism as well as tumorigenesis in BC. Especially, PHY represents a promising therapeutic effect against hormone-insensitive BC (triple negative) by targeting energy metabolism.


Assuntos
Neoplasias da Mama , Oxepinas/farmacologia , Neoplasias de Mama Triplo Negativas , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Glicólise , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
12.
J Nanosci Nanotechnol ; 20(9): 5819-5822, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331188

RESUMO

δ-Catenin is overexpressed in human cancers, including prostate, breast, lung, and ovarian cancers. Therefore, detection of δ-catenin level in patient specimens can be used as a diagnostic marker for the cancer screening. In laboratories, δ-catenin levels have been analyzed by western blot, which requires multiple procedures and is incapable of multiplex analysis of a target protein from a single reaction. In this study, we aimed to develop δ-catenin antibody-conjugated magnetic beads that can be used for quantitation of δ-catenin by bead-based multiplex assay. δ-catenin level from HEK293T and CWR22Rv-1 cell lysates was quantified to determine whether the antibody-conjugatedmagnetic bead can be used for the detection of trace amounts of δ-catenin. Our results indicate that analysis with 1 µg of CWR22Rv-1 and HEK293T cell lysates showed 918.67±103.8 and 874.33±37.21 MFI values, respectively. In conclusion, the results suggest that the procedure for detection of δ-catenin level through the antibody-conjugated magnetic beads provides a sensitive and costeffective solution for screening from patient specimens.


Assuntos
Cateninas , Neoplasias/diagnóstico , Linhagem Celular Tumoral , Células HEK293 , Humanos , delta Catenina
13.
Toxicol In Vitro ; 59: 300-311, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31154059

RESUMO

Exposure to environmental pollutants is a major public health concern. This study investigated the inflammatory and tumorigenic effects of environmental pollutants (benzene, benzo[a]pyrene, cadmium, and diisononyl phthalate) on transformed A549 and H292 lung alveolar epithelial cells and non-transformed BEAS-2B lung bronchial epithelial cells. The cytotoxic effects of the pollutants were analyzed by the methyl thiazolyl tetrazolium assay. The anchorage-independent soft agar assay demonstrated that treatment with benzene, cadmium, and diisononyl phthalate for 4 weeks induced malignant transformation of BEAS-2B cells and tumorigenesis of A549 and H292 cells. mRNA expression of the inflammation-related genes tenascin-C, matrix metalloproteinase (MMP)-9, and MMP-2, as well as inhibitors of MMPs (TIMP-1 and TIMP-2), was analyzed by RT-PCR. The pollutants largely upregulated expression of MMP-9 and MMP-2, but suppressed expression of their inhibitors TIMP-1 and TIMP-2. Measurement of transepithelial electrical resistance revealed that cadmium and diisononyl phthalate significantly increased cell permeability. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a transcription factor of inflammatory genes, including MMP-9 and MMP-2, while signal transducer and activator of transcription (STAT) 3 is a key regulator of malignant transformation. All the pollutants activated the NF-κB promoter, while only cadmium induced activation of the STAT3 promoter in HEK293T cells. Moreover, all the pollutants increased the phospho-NF-κB level, but only cadmium and diisononyl phthalate increased the phospho-STAT3 level in A549 and BEAS-2B cells. These findings suggest that specific environmental pollutants enhance inflammation, cell permeability, and malignant transformation in lung epithelial cells by activating the oncogenic transcription factors STAT3 and NF-κB.


Assuntos
Carcinógenos/toxicidade , Poluentes Ambientais/toxicidade , Células Epiteliais/efeitos dos fármacos , Material Particulado/toxicidade , Benzeno/toxicidade , Benzo(a)pireno/toxicidade , Cádmio/toxicidade , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Pulmão/citologia , NF-kappa B/metabolismo , Ácidos Ftálicos/toxicidade , Fator de Transcrição STAT3/metabolismo
14.
Int J Mol Sci ; 20(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141929

RESUMO

Deoxypodophyllotoxin (DPT) is a cyclolignan compound that exerts anti-cancer effects against various types of cancers. DPT induces apoptosis and inhibits the growth of breast, brain, prostate, gastric, lung, and cervical tumors. In this study, we sought to determine the effect of DPT on cell proliferation, apoptosis, motility, and tumorigenesis of three colorectal cancer (CRC) cell lines: HT29, DLD1, and Caco2. DPT inhibited the proliferation of these cells. Specifically, the compound-induced mitotic arrest in CRC cells by destabilizing microtubules and activating the mitochondrial apoptotic pathway via regulation of B-cell lymphoma 2 (Bcl-2) family proteins (increasing Bcl-2 associated X (BAX) and decreasing B-cell lymphoma-extra-large (Bcl-xL)) ultimately led to caspase-mediated apoptosis. In addition, DPT inhibited tumorigenesis in vitro, and in vivo skin xenograft experiments revealed that DPT significantly decreased tumor size and tumor weight. Taken together, our results suggest DPT to be a potent compound that is suitable for further exploration as a novel chemotherapeutic for human CRC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Podofilotoxina/análogos & derivados , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/uso terapêutico , Células CACO-2 , Neoplasias Colorretais/metabolismo , Medicamentos de Ervas Chinesas , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Moduladores de Tubulina/uso terapêutico
15.
Phytomedicine ; 56: 10-20, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668330

RESUMO

BACKGROUND: Lichens, which represent symbiotic associations of fungi and algae, are potential sources of numerous natural products. Physciosporin (PHY) is a potent secondary metabolite found in lichens and was recently reported to inhibit the motility of lung cancer cells via novel mechanisms. PURPOSE: The present study investigated the anticancer potential of PHY on colorectal cancer (CRC) cells. METHODS: PHY was isolated from lichen extract by preparative TLC. The effect of PHY on cell viability, motility and tumourigenicity was elucidated by MTT assay, hoechst staining, flow cytometric analysis, transwell invasion and migration assay, soft agar colony formation assay, Western blotting, qRT-PCR and PCR array in vitro as well as tumorigenicity study in vivo. RESULTS: PHY decreased the viability of various CRC cell lines (Caco2, CT26, DLD1, HCT116 and SW620). Moreover, PHY elicited cytotoxic effects by inducing apoptosis at toxic concentrations. At non-toxic concentrations, PHY dose-dependently suppressed the invasion, migration and colony formation of CRC cells. PHY inhibited the motility of CRC cells by suppressing epithelial-mesenchymal transition and downregulating actin-based motility markers. In addition, PHY downregulated ß-catenin and its downstream target genes cyclin-D1 and c-Myc. Moreover, PHY modulated KAI1 C-terminal-interacting tetraspanin and KAI1 expression, and downregulated the downstream transcription factors c-jun and c-fos. Finally, PHY administration showed considerable bioavailability and effectively decreased the growth of CRC xenografts in mice without causing toxicity. CONCLUSION: PHY suppresses the growth and motility of CRC cells via novel mechanisms.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Oxepinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Líquens/química , Masculino , Camundongos Endogâmicos BALB C , Oxepinas/administração & dosagem , Oxepinas/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo
16.
Bioorg Med Chem Lett ; 28(23-24): 3658-3664, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528977

RESUMO

Heat-shock protein 90 (HSP90) is a molecular chaperone that activates oncogenic transformation in several solid tumors, including lung and breast cancers. Ganetespib, a most promising candidate among several HSP90 inhibitors under clinical trials, has entered Phase III clinical trials for cancer therapy. Despite numerous evidences validating HSP90 as a target of anticancer, there are few studies on PET agents targeting oncogenic HSP90. In this study, we synthesized and biologically evaluated a novel 18F-labeled 5-resorcinolic triazolone derivative (1, [18F]PTP-Ganetespib) based on ganetespib. [18F]PTP-Ganetespib was labeled by click chemistry of Ganetespib-PEG-Alkyne (10) and [18F]PEG-N3 (11) with 37.3 ±â€¯5.11% of radiochemical yield and 99.7 ±â€¯0.09% of radiochemical purity. [18F]PTP-Ganetespib showed proper LogP (0.96 ±â€¯0.06) and good stability in human serum over 97% for 2 h. [18F]PTP-Ganetespib showed high uptakes in breast cancer cells containing triple negative breast cancer (TNBC) MDA-MB-231 and Her2-negative MCF-7 cells, which are target breast cancer cell lines of HSP90 inhibitor, ganetespib, as an anticancer. Blocking of HSP90 by the pretreatment of ganetespib exhibited significantly decreased accumulation of [18F]PTP-Ganetespib in MDA-MB-231 and MCF-7 cells, indicating the specific binding of [18F]PTP-Ganetespib to MDA-MB-231 and MCF-7 cells with high HSP90 expression. In the biodistribution and microPET imaging studies, the initial uptake into tumor was weaker than in other thoracic and abdominal organs, but [18F]PTP-Ganetespib was retained relatively longer in the tumor than other organs. The uptake of [18F]PTP-Ganetespib in tumors was not sufficient for further development as a tumor-specific PET imaging agent by itself, but this preliminary PET imaging study of [18F]PTP-Ganetespib can be basis for developing new PET imaging agents based on HSP90 inhibitor, ganetespib.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Compostos Radiofarmacêuticos/síntese química , Triazóis/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Química Click , Cristalografia por Raios X , Estabilidade de Medicamentos , Radioisótopos de Flúor/química , Proteínas de Choque Térmico HSP90/química , Humanos , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual , Transplante Heterólogo , Triazóis/sangue , Triazóis/metabolismo
17.
Molecules ; 23(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441806

RESUMO

Lichens produce various unique chemicals that are used in the pharmaceutical industry. To screen for novel lichen secondary metabolites that inhibit the stemness potential of colorectal cancer cells, we tested acetone extracts of 11 lichen samples collected in Chile. Tumidulin, isolated from Niebla sp., reduced spheroid formation in CSC221, DLD1, and HT29 cells. In addition, mRNA expressions and protein levels of cancer stem markers aldehyde dehydrogenase-1 (ALDH1), cluster of differentiation 133 (CD133), CD44, Lgr5, and Musashi-1 were reduced after tumidulin treatment. Tumidulin decreased the transcriptional activity of the glioma-associated oncogene homolog zinc finger protein (Gli) promoter in reporter assays, and western blotting confirmed decreased Gli1, Gli2, and Smoothened (SMO) protein levels. Moreover, the tumidulin activity was not observed in the presence of Gli and SMO inhibitors. Together, these results demonstrate for the first time that tumidulin is a potent inhibitor of colorectal cancer cell stemness.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Líquens/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
18.
Sci Rep ; 8(1): 16234, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390003

RESUMO

Usnic acid (UA), a lichen secondary substance, has considerable anticancer activity in vitro, whereas its effect in vivo is limited. Here, potassium usnate (KU) was prepared by the salinization of UA to enhance its water solubility. KU showed increased bioavailability compared with UA in the tumor, liver, and plasma of a CT26 syngeneic mouse tumor xenograft model after oral administration, as determined by LC-MS/MS analysis. KU exhibited potent anticancer effects on colorectal cancer cells and inhibited liver metastasis in an orthotopic murine colorectal cancer model. KU treatment downregulated the epithelial-mesenchymal markers Twist, Snail, and Slug and the metastasis-related genes CAPN1, CDC42, CFL1, IGF1, WASF1, and WASL in cells and tumor tissues. The present results suggest the potential application of the water-soluble form of UA, KU, in anticancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Benzofuranos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácido Selênico/farmacocinética , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzofuranos/química , Benzofuranos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral/transplante , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Potássio/química , Ácido Selênico/administração & dosagem , Resultado do Tratamento
19.
Phytomedicine ; 40: 106-115, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496163

RESUMO

BACKGROUND: Endolichenic fungi are microbes that inhabit the thalli of lichens and produce various unique chemicals that can be used for pharmaceutical purposes. PURPOSE: This study screened a library of endolichenic fungal extracts to identify novel anticancer agents capable of suppressing the tumorigenicity of human cancer cells. METHODS: Active compounds were isolated from extracts of endolichenic fungi by column chromatography and reverse-phase HPLC. The anticancer effects of the extracts on cell viability was assessed with the use of MTT assay, Western blotting, fluorescence labeling of apoptotic cell, and flow cytometric analysis; and cell motility with the use of migration, invasion and soft agar colony-formation assay in vitro; and on skin and intraperitoneal mouse xenograft tumors in vivo were investigated. The therapeutic effects of the extract alone or in combination with the conventional chemoreagent docetaxel were analyzed by sulforhodamine B assay. RESULTS: Acetone extracts of EL002332, isolated from Endocarpon pusillum collected in the China desert in 2010, showed selective cytotoxicity against AGS human gastric cancer cells and CT26 mouse colon cancer cells. An active pure compound named myC was isolated from mycelium acetone extracts in a liquid culture system and showed more potent cytotoxicity than crude extracts in the AGS cell line. Especially, myC greatly increased the apoptotic cell population at the IC50 concentration and activated apoptotic signaling by regulating Bcl2 family protein expression and caspase pathway activity. EL002332 crude extracts and myC decreased AGS cell motility at sub-lethal concentrations. In vivo skin and intraperitoneal xenograft tumor experiments showed that the size of tumors and the tumor score were significantly smaller in EL002332 crude extract-treated groups than in control groups. EL002332 crude extracts showed synergistic effects with docetaxel on the AGS and TMK1 cell lines. CONCLUSION: The endolichenic fungus EL002332 has potential anticancer activity in gastric cancer and peritoneal carcinomatosis.


Assuntos
Antineoplásicos/farmacologia , Líquens/microbiologia , Neoplasias Gástricas/tratamento farmacológico , Acetona/química , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ascomicetos/química , Ascomicetos/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , China , Humanos , Masculino , Camundongos Endogâmicos BALB C , Micélio/química , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/patologia , Extratos Vegetais/farmacologia , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA