Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460954

RESUMO

AIM: This study examined Listeria monocytogenes isolates from two slaughterhouses in Burdur province, southern Turkey, over four seasons for antibiotic resistance, serogroups, virulence genes, in vitro biofilm forming capacity, and genetic relatedness. METHODS AND RESULTS: Carcass (540) and environment-equipment surface (180) samples were collected from two slaughterhouses (S1, S2) for 1 year (4 samplings). Of the 89 (12.4%) positive isolates, 48 (53.9%) were from animal carcasses, and 41 (46.1%) from the environment-equipment surfaces. Autumn was the peak season for Listeria monocytogenes compared to summer and spring (P < 0.05). In addition, the most common serotype between seasons was 1/2c. Except for plcA and luxS genes, all isolates (100%) harbored inlA, inlC, inlJ, hlyA, actA, iap, flaA genes. Listeria monocytogenes isolates were identified as belonging to IIc (1/2c-3c; 68.5%), IVb (4b-4d-4e; 29.2%), and IIa (1/2a-3a; 2.2%) in the screening using multiplex polymerase chain reaction-based serogrouping test. A total of 65 pulsotypes and 13 clusters with at least 80% homology were determined by using pulsed field gel electrophoresis on samples that had been digested with ApaI. Thirty-four (38.2%) of the isolates were not resistant to any of the 14 antibiotics tested. The antibiotic to which the isolates showed the most resistance was rifampicin (44.9%). Serotype 1/2c was the most resistant serotype to antibiotics. Despite having biofilm-associated genes (inlA, inlB, actA, flaA, and luxS), a minority (11%) of isolates formed weak biofilm. CONCLUSION: This study revealed seasonal changes prevalence of Listeria monocytogenes, particularly higher in autumn, posing a greater risk of meat contamination. Notably, Serotype 1/2c showed significant prevalence and antibiotic resistance. Indistinguishable isolates indicated cross-contamination, underscoring the importance of prioritized training for slaughterhouse personnel in sanitation and hygiene protocols.


Assuntos
Listeria monocytogenes , Animais , Estações do Ano , Matadouros , Microbiologia de Alimentos , Prevalência , Antibacterianos/farmacologia , Sorotipagem
2.
Bioresour Bioprocess ; 10(1): 85, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38647968

RESUMO

Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA