Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Microbes Infect ; 26(4): 105310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38316376

RESUMO

Parasitic diseases are still a major public health problem especially among individuals of low socioeconomic status in underdeveloped countries. In recent years it has been demonstrated that parasites can release extracellular vesicles that participate in the host-parasite communication, immune evasion, and in governing processes associated with host infection. Extracellular vesicles are membrane-bound structures released into the extracellular space that can carry several types of biomolecules, including proteins, lipids, nucleic acids, and metabolites, which directly impact the target cells. Extracellular vesicles have attracted wide attention due to their relevance in host-parasite communication and for their potential value in applications such as in the diagnostic biomarker discovery. This review of the literature aimed to join the current knowledge on the role of extracellular vesicles in host-parasite interaction and summarize its molecular content, providing information for the acquisition of new tools that can be used in the diagnosis of parasitic diseases. These findings shed light to the potential of extracellular vesicle cargo derived from protozoan parasites as novel diagnostic tools.


Assuntos
Vesículas Extracelulares , Doenças Parasitárias , Animais , Humanos , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Parasita , Parasitos/metabolismo , Doenças Parasitárias/diagnóstico , Doenças Parasitárias/parasitologia
2.
Parasitol Res ; 123(2): 122, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311672

RESUMO

Protozoal infections cause significant morbidity and mortality in humans and animals. The use of several antiprotozoal drugs is associated with serious adverse effects and resistance development, and drugs that are more effective are urgently needed. Microorganisms, mammalian cells and fluids, insects, and reptiles are sources of antimicrobial peptides (AMPs) that act against pathogenic microorganisms; these AMPs have been widely studied as a promising alternative therapeutic option to conventional antibiotics, aiming to treat infections caused by multidrug-resistant pathogens. One advantage of AMP molecules is their adaptability, as they can be easily fine-tuned for broad-spectrum or targeted activity by changing the amino acid residues in their sequence. Consequently, these variations in structural and physicochemical properties can alter the antimicrobial activities of AMPs and decrease resistance development. This article presents an overview of peptide activities against amebiasis, giardiasis, trichomoniasis, Chagas disease, leishmaniasis, malaria, and toxoplasmosis. AMPs and their analogs demonstrate great potential as therapeutics, with potent and selective activity, when compared with commercially available drugs, and hold the potential to act as new scaffolds for the development of novel anti-protozoal drugs.


Assuntos
Anti-Infecciosos , Animais , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Antimicrobianos , Antibacterianos/uso terapêutico , Mamíferos
3.
Eur J Clin Microbiol Infect Dis ; 43(1): 167-170, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37917224

RESUMO

The failures in Trichomonas vaginalis (TV) infection diagnosis leave more than half of cases unidentified. In this report, urine and vaginal discharge samples were analyzed by wet mount, culture examination, and real-time PCR by Allplex™ (Seegene®) kit, in a population assisted by the Brazilian Public Health System. From 747 samples, 2.81% were positive for TV in wet mount and culture, and 3.88% by Allplex™. Samples kept at - 80 ºC for 22 months did not impair the PCR technique. The sensitivity for wet mount, culture, and Allplex™ was 72, 100, and 100%, respectively. Allplex™ technique showed highest detection of TV.


Assuntos
Infecções Sexualmente Transmissíveis , Vaginite por Trichomonas , Trichomonas vaginalis , Feminino , Humanos , Trichomonas vaginalis/genética , Vaginite por Trichomonas/diagnóstico , Vaginite por Trichomonas/epidemiologia , Brasil/epidemiologia , Saúde Pública , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia
4.
Int J Biol Macromol ; 257(Pt 2): 128701, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072348

RESUMO

Trichomoniasis is a common sexually transmitted infection that poses significant complications for women. Challenges in treatment include adverse effects and resistance to standard antimicrobial agents. Given this context, a sesame seed oil nanoemulsion (SONE) was developed and showed anti-Trichomonas vaginalis activity. To facilitate the local application of SONE, a polysaccharide film was developed using xanthan gum (XG) and κ-carrageenan gum (CG). A blend of XG and CG (at 2 %, ratio 1:3) plasticized with glycerol produced a more promising film (XCF) than using the gums individually. The film containing SONE (SONE-XCF) was successfully obtained by replacing the aqueous solvent with SONE via solvent evaporation technique. The hydrophilic SONE-XCF exhibited homogeneity and suitable mechanical properties for vaginal application. Furthermore, SONE-XCF demonstrated mucoadhesive properties and high absorption capacity for excessive vaginal fluids produced in vaginitis. It also had a disintegration time of over 8 h, indicating long retention at the intended site of action. Hemolysis and chorioallantoic membrane tests confirmed the safety of the film. Therefore, SONE-XCF is a biocompatible film with a natural composition and inherent activity against T. vaginalis, possessing exceptional characteristics that make it appropriate for vaginal application, offering an interesting alternative for trichomoniasis treatment.


Assuntos
Nanocompostos , Sesamum , Tricomoníase , Feminino , Humanos , Carragenina , Prednisona , Polissacarídeos Bacterianos , Solventes , Preparações Farmacêuticas , Óleos de Plantas/farmacologia
5.
Curr Microbiol ; 80(12): 383, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870614

RESUMO

The disbalance of vaginal eubiotic microbiota can lead to overgrowth of Candida species and bacteria responsible for aerobic vaginitis, activating inflammatory pathways. The presence of Trichomonas vaginalis, a sexually transmitted protozoan pathogen, can be a predisposing factor for disordering the growth of bacterial/fungal pathogenic species due to the increase in pH and reduction of eubiotic microbiota. Herein, we evaluated the effects of the potent trichomonacidal compound, copper(II)-1,10-phenanthroline-5,6-dione (Cu-phendione), against pathogens responsible for candidiasis and aerobic vaginitis. Cu-phendione showed antimicrobial activity against Candida albicans, non-albicans Candida species (C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis) and Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus, Enterococcus faecalis, and Streptococcus agalactiae) bacteria. Moreover, Cu-phendione was able to interfere with the fungal biofilm formation. These results highlight the antimicrobial potential of Cu-phendione against bacterial and fungal strains of vaginitis-causing infectious agents.


Assuntos
Anti-Infecciosos , Microbiota , Poríferos , Vaginite , Animais , Feminino , Humanos , Cobre/farmacologia , Cobre/química , Disbiose , Anti-Infecciosos/farmacologia , Bactérias , Candida , Candida glabrata , Biofilmes
6.
Bioorg Chem ; 141: 106888, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839143

RESUMO

Trichomonas vaginalis, a flagellated and anaerobic protozoan, is a causative agent of trichomoniasis. This disease is among the world's most common non-viral sexually transmitted infection. A single class drug, nitroimidazoles, is currently available for the trichomoniasis treatment. However, resistant isolates have been identified from unsuccessfully treated patients. Thus, there is a great challenge for a discovery of innovative anti-T. vaginalis agents. As part of our ongoing search for antiprotozoal chalcones, we designed and synthesized a series of 21 phenolic chalcones, which were evaluated against T. vaginalis trophozoites. Structure-activity relationship indicated hydroxyl group plays a role key in antiprotozoal activity. 4'-Hydroxychalcone (4HC) was the most active compound (IC50 = 27.5 µM) and selected for detailed bioassays. In vitro and in vivo evaluations demonstrated 4HC was not toxic against human erythrocytes and Galleria mellonella larvae. Trophozoites of T. vaginalis were treated with 4HC and did not present significant reactive oxygen species (ROS) accumulation. However, compound 4HC was able to increase ROS accumulation in neutrophils coincubated with T. vaginalis. qRT-PCR Experiments indicated that 4HC did not affect the expression of pyruvate:ferredoxin oxidoreductase (PFOR) and ß-tubulin genes. In silico simulations, using purine nucleoside phosphorylase of T. vaginalis (TvPNP), corroborated 4HC as a promising ligand. Compound 4HC was able to establish interactions with residues D21, G20, M180, R28, R87 and T90 through hydrophobic interactions, π-donor hydrogen bond and hydrogen bonds. Altogether, these results open new avenues for phenolic chalcones to combat trichomoniasis, a parasitic neglected infection.


Assuntos
Antiprotozoários , Chalconas , Tricomoníase , Trichomonas vaginalis , Humanos , Trichomonas vaginalis/metabolismo , Chalconas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tricomoníase/tratamento farmacológico , Tricomoníase/parasitologia , Antiprotozoários/metabolismo , Fenóis/metabolismo
7.
Pathogens ; 12(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242415

RESUMO

Trichomonas vaginalis is responsible for 156 million new cases per year worldwide. When present asymptomatically, the parasite can lead to serious complications, such as development of cervical and prostate cancer. As infection increases the acquisition and transmission of HIV, the control of trichomoniasis represents an important niche for the discovery and development of new antiparasitic molecules. This urogenital parasite synthesizes several molecules that allow the establishment and pathogenesis of infection. Among them, peptidases occupy key roles as virulence factors, and the inhibition of these enzymes has become an important mechanism for modulating pathogenesis. Based on these premises, our group recently reported the potent anti-T. vaginalis action of the metal-based complex [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione). In the present study, we evaluated the influence of Cu-phendione on the modulation of proteolytic activities produced by T. vaginalis by biochemical and molecular approaches. Cu-phendione showed strong inhibitory potential against T. vaginalis peptidases, especially cysteine- and metallo-type peptidases. The latter revealed a more prominent effect at both the post-transcriptional and post-translational levels. Molecular Docking analysis confirmed the interaction of Cu-phendione, with high binding energy (-9.7 and -10.7 kcal·mol-1, respectively) at the active site of both TvMP50 and TvGP63 metallopeptidases. In addition, Cu-phendione significantly reduced trophozoite-mediated cytolysis in human vaginal (HMVII) and monkey kidney (VERO) epithelial cell lineages. These results highlight the antiparasitic potential of Cu-phendione by interaction with important T. vaginalis virulence factors.

8.
Microb Cell ; 10(5): 103-116, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125086

RESUMO

Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen's interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5'-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.

9.
Curr Protein Pept Sci ; 24(4): 307-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876838

RESUMO

This article provides a comprehensive review of several subclasses of metallo-type peptidases expressed by the main clinically relevant protozoa, including Plasmodium spp., Toxoplasma gondii, Cryptosporidium spp., Leishmania spp., Trypanosoma spp., Entamoeba histolytica, Giardia duodenalis, and Trichomonas vaginalis. These species comprise a diverse group of unicellular eukaryotic microorganisms responsible for widespread and severe human infections. Metallopeptidases, defined as hydrolases with activity mediated by divalent metal cation, play important roles in the induction and maintenance of parasitic infections. In this context, metallopeptidases can be considered veritable virulence factors in protozoa with direct/indirect participation in several key pathophysiological processes, including adherence, invasion, evasion, excystation, central metabolism, nutrition, growth, proliferation, and differentiation. Indeed, metallopeptidases have become an important and valid target to search for new compounds with chemotherapeutic purposes. The present review aims to gather updates regarding metallopeptidase subclasses, exploring their participation in protozoa virulence as well as investigating the similarity of peptidase sequences through bioinformatic techniques in order to discover clusters of great relevance for the development of new broad antiparasitic molecules.


Assuntos
Criptosporidiose , Cryptosporidium , Humanos , Virulência , Eucariotos , Metaloproteases
10.
Trop Med Infect Dis ; 8(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36668944

RESUMO

The human anaerobic or microaerophilic protists Giardia duodenalis, Entamoeba histolytica, and Trichomonas vaginalis are classified as amitochondriate parasites, a group of unicellular organisms that lack canonical mitochondria organelles. These microorganisms suffered adaptations to survive in hostile microenvironments and together represent an increasing threat to public health in developing countries. Nevertheless, the current therapeutic drugs to manage the infections are scarce and often cause several side effects. Furthermore, refractory cases associated with the emergence of parasitic resistance are concerns that guide the search for new pharmacological targets and treatment alternatives. Herein, essential oils and terpenic compounds with activity against amitochondriate parasites with clinical relevance are summarized and insights into possible mechanisms of action are made. This review aims to contribute with future perspectives for research with these natural products as potential alternatives for the acquisition of new molecules for the treatment of amitochondriate protists.

11.
Res Microbiol ; 174(4): 104015, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36566772

RESUMO

Trichomoniasis is a neglected, parasitic, sexually transmitted infection. Resistance to the only approved drugs is increasing worldwide, leaving millions of people without alternative medications. Thus, the search for new therapeutic options against this infection is necessary. Previously, our group reported that 1,10-phenanthroline-5,6-dione (phendione) and its silver(I) and copper (II) complexes (abbreviated as Ag-phendione and Cu-phendione, respectively) presented activity against the amitochondriate parasite T. vaginalis, with Cu-phendione being the most effective (IC50 = 0.84 µM). Methods: qRT-PCR, SEM, flow cytometry. The current study on the effects of Cu-phendione on the antioxidant metabolism of T. vaginalis by qRT-PCR revealed that the complex causes a decrease in the relative expression of mRNA of NADH oxidase, flavin reductase, superoxide dismutase, peroxiredoxin, iron-sulfur flavoprotein, rubrerythrin and osmotically inducible proteins. In contrast, the mRNA expression of flavodiiron protein was increased. Detoxification-related enzymes were downregulated, impairing oxygen metabolism in trophozoites and triggering a subsequent accumulation of the superoxide anion. Although no DNA fragmentation was observed, the treatment of parasites with Cu-phendione led to a significant reduction in cell size and a concomitant increase in granularity. The complex promoted phosphatidylserine exposure at the plasma membrane (as judged by Annexin V binding) and propidium iodide was unable to passively permeate the parasites. All of these outcomes are classical hallmarks of cell death by apoptosis. In essence, the trichomonacidal effect of Cu-phendione operates through redox homeostasis imbalance, which is a mode of action that is quite distinct from that caused by metronidazole.


Assuntos
Trichomonas vaginalis , Humanos , Trichomonas vaginalis/genética , Cobre/farmacologia , Prata/farmacologia , Estresse Oxidativo
12.
Nat Prod Res ; 37(6): 1042-1046, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35848393

RESUMO

The current trichomoniasis treatment is restrict to 5-nitroimidazole drugs and the emergence of resistant isolates points the need for new therapeutical alternatives. In this study the anti-Trichomonas vaginalis activity of essential oils obtained from Myrtaceae occurring in Caatinga, a plant family with potential antiparasitic activity, was showed. The essential oils varied in their capacity to kill ATCC and fresh clinical T. vaginalis isolates, which was associated with heterogeneity and different patterns of endosymbiosis. Essential oils caused moderate to strong cytotoxicity against mammalian cells, but essential oil of Eugenia pohliana (EOEp) exhibited promising selectivity index towards vaginal epithelial cells. A checkerboard assay revealed a synergistic effect when EOEp and metronidazole were associated, indicating different mechanisms of action. The GC/MS analysis demonstrated the volatile composition of EOEp, with δ-cadinene as majoritary component. This molecule seems to contribute to the trichomonacidal effect and shows potential for the prospection of new antiparasitic compounds.


Assuntos
Eugenia , Myrtaceae , Óleos Voláteis , Trichomonas vaginalis , Animais , Feminino , Óleos Voláteis/química , Antiparasitários/farmacologia , Metronidazol/farmacologia , Mamíferos
13.
Pharmaceutics ; 14(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36297547

RESUMO

Trichomoniasis is the most common nonviral sexually transmitted infection in the world, but its available therapies present low efficacy and high toxicity. Diphenyl diselenide (PhSe2) is a pharmacologically active organic selenium compound; however, its clinical use is hindered by its lipophilicity and toxicity. Nanocarriers are an interesting approach to overcome the limitations associated with this compound. This study designed and evaluated a vaginal hydrogel containing PhSe2-loaded Eudragit® RS100 and coconut oil nanocapsules for the treatment of trichomoniasis. Nanocapsules presented particle sizes in the nanometric range, positive zeta potential, a compound content close to the theoretical value, and high encapsulation efficiency. The nanoencapsulation maintained the anti-Trichomonas vaginalis action of the compound while improving the scavenger action in a DPPH assay. The hydrogels were prepared by thickening nanocapsule suspensions with locust bean gum (3%). The semisolids maintained the nanometric size of the particles and the PhSe2 content at around the initial concentration (1.0 mg/g). They also displayed non-Newtonian pseudo-plastic behavior and a highly mucoadhesive property. The chorioallantoic membrane method indicated the absence of hemorrhage, coagulation, or lysis. The compound, from both non-encapsulated and nano-based hydrogel delivery systems, remained on the surface of the bovine vaginal mucosa. Therefore, the formulations displayed the intended properties and could be a promising alternative for the treatment of trichomoniasis.

14.
Mar Biotechnol (NY) ; 24(5): 1014-1022, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36102994

RESUMO

Trichomoniasis is the most common non-viral sexually transmitted infection (STI) in the world caused by Trichomonas vaginalis. Failures in the treatment with the 5-nitroimidazole class including parasite resistance to metronidazole elicit new alternatives. Marine natural products are sources of several relevant molecules, presenting a variety of metabolites with numerous biological activities. In this work, we evaluated the anti-T. vaginalis activity of fungi associated with marine invertebrates by mass spectrometry-based metabolomics approaches. After screening of six marine fungi, extract from Penicillium citrinum FMPV 15 has shown to be 100% active against T. vaginalis, and the gel permeation column on Sephadex LH-20® yielded twelve organic fractions which five showed to be active. Metabolomics and statistical analyses were performed with all the samples (extract and fractions), and several compounds were suggested to be related to the activity. These components include citrinin, dicitrinin C, citreoisocoumarin, dihydrocitrinone, decarboxycitrinin, penicitrinone C, and others. The minimum inhibitory concentration (MIC) value of anti-T. vaginalis activity of citrinin was 200 µM. The marine fungi metabolites show potential as new alternatives to overcome drug resistance in T. vaginalis infections.


Assuntos
Produtos Biológicos , Citrinina , Trichomonas vaginalis , Fungos , Espectrometria de Massas , Metronidazol/farmacologia , Extratos Vegetais
15.
Bioorg Chem ; 125: 105912, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660839

RESUMO

Trichomoniasis is a neglected parasitic infection, with no oral therapeutic alternatives to overcome the pitfalls of currently approved drugs. In this context, the search for new anti-Trichomonas vaginalis drugs is imperative. Here we report the selective anti-T. vaginalis activity of a substituted 8-hydroxyquinoline-5-sulfonamide derivative. Six different derivatives were evaluated for anti-T. vaginalis. In vitro and in vivo toxicity methods, association with metal ions, and investigation on the mechanism of action were performed with the most active derivative, PH 152. Cytotoxicity assays showed selectivity for the parasite and the low toxicity was confirmed in G. mellonella larvae model. The mode of action is related to iron chelation by disrupting Fe-S clusters-dependent enzyme activities in the parasite. Proteomic analysis indicated inhibition of metallopeptidases related to T. vaginalis virulence mechanisms and metabolic pathways. PH 152 presented selective trichomonacidal activity through multitarget action.


Assuntos
Trichomonas vaginalis , Quelantes de Ferro , Metaloproteases , Oxiquinolina/farmacologia , Proteômica , Trichomonas vaginalis/fisiologia
16.
Parasitol Res ; 121(3): 981-989, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35113221

RESUMO

Trichomoniasis is the most common non-viral sexually transmitted infection worldwide and it may have serious consequences, especially for women. Currently, 5-nitroimidazole drugs are the treatment of choice for trichomoniasis, although presenting adverse effects and reported cases of drug resistance. Metabolites isolated from marine fungi have attracted considerable attention due to their unique chemical structures with diverse biological activities, including antiprotozoal activity. In this study, we showed the anti-Trichomonas vaginalis activity of fractions obtained from marine fungi and the chemical composition of the most active fraction was determined. Ethyl acetate fractions of the fungus Aspergillus niger (EAE03) and Trichoderma harzianum/Hypocrea lixii complex (EAE09) were active against T. vaginalis. These samples, EAE03 and EAE09, were also effective against the fresh clinical isolate metronidazole-resistant TV-LACM2R, presenting MIC values of 2.0 mg/mL and 1.0 mg/mL, respectively. The same MIC values were found against ATCC 30,236 T. vaginalis isolate. In vitro cytotoxicity revealed only the fraction named EAE03 with no cytotoxic effect; however, the active fractions did not promote a significant hemolytic effect after 1-h incubation. Already, the in vivo toxicity evaluation using Galleria mellonella larvae demonstrated that none of the tested samples caused a reduction in animal survival. The fraction EAE03 was followed for purification steps and analyzed by LC-DAD-MS. Eleven compounds were annotated, including butyrolactone, butanolide, and atromentin. Overall, the range of activities reported confirms the potential of marine fungi to produce bioactive molecules.


Assuntos
Antiprotozoários , Tricomoníase , Trichomonas vaginalis , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Feminino , Fungos , Humanos , Metronidazol/farmacologia , Tricomoníase/tratamento farmacológico
18.
Biomed Pharmacother ; 139: 111611, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243597

RESUMO

Trichomonas vaginalis is an amitochondriate protozoan and the agent of human trichomoniasis, the most prevalent non-viral sexually transmitted infection (STI) in the world. In this study we showed that 2,4-diamine-quinazoline derivative compound (PH100) kills T. vaginalis. PH100 showed activity against fresh clinical and American Type Culture Collection (ATCC) T. vaginalis isolates with no cytotoxicity against cells (HMVI, 3T3-C1 and VERO) and erythrocytes. In addition, PH100 showed synergistic action with metronidazole, indicating that these compounds act by different mechanisms. When investigating the mechanism of action of PH100 to ATCC 30236, apoptosis-like characteristics were observed, such as phosphatidylserine exposure, membrane alterations, and modulation of gene expression and activity of peptidases related to apoptosis. The apoptosis-like cell death features were not observed for the fresh clinical isolate treated with PH100 revealing distinct profiles. Our data revealed the heterogeneity among T. vaginalis isolates and contribute with the understanding of mechanisms of cell death in pathogenic eukaryotic organisms without mitochondria.


Assuntos
Diaminas/farmacologia , Parasitos/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Quinazolinas/farmacologia , Vaginite por Trichomonas/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Metronidazol/farmacologia , Camundongos , Vaginite por Trichomonas/parasitologia , Células Vero
19.
Planta Med ; 87(6): 480-488, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578433

RESUMO

Trichomonas vaginalis causes trichomoniasis, a nonviral sexually transmitted infection with a high prevalence worldwide. Oral metronidazole is the drug of choice for the treatment of this disease, although high levels of T. vaginalis resistance to this agent are well documented in the literature. This study describes the anti-T. vaginalis activity of an optimized coumarin-rich extract from Pterocaulon balansae. Optimization was performed to maximize extraction of total coumarins by means of a 3-level Box-Behnken design, evaluating the effect of three factors: extraction time, plant : solvent ratio, and ethanol concentration. Optimum conditions were found to be 5 h extraction time and a plant : solvent ratio of 1% (w/v) and 60% (v/v) ethanol, which resulted in approximately 30 mg of total coumarins/g of dry plant. The coumarin-enriched extract exhibited a minimum inhibitory concentration of 30 µg/mL and an IC50 of 3.2 µg/mL against T. vaginalis, a low cytotoxicity, and a high selectivity index (18 for vaginal epithelial cells and 16 for erythrocytes). The coumarins permeation/retention profile through porcine vaginal mucosa was evaluated in Franz-type diffusion cells. After 8 h of kinetics, coumarins were detected in the tissue (4.93 µg/g) without detecting them in the receptor compartment. A significant increase of coumarins in the mucosa layers (8.18 µg/g) and receptor compartment (0.26 µg/g) was detected when a T. vaginalis suspension (2 × 105 trophozoites/mL) was previously added onto the mucosa. No alterations were visualized in the stratified squamous non-keratinized epithelium of the porcine vaginal mucosa after contact with the extract. Overall, these results suggest that the P. balansae coumarin-rich extract may have potential as a treatment for trichomoniasis.


Assuntos
Asteraceae , Trichomonas vaginalis , Animais , Cumarínicos/farmacologia , Feminino , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Suínos
20.
Curr Top Med Chem ; 21(3): 181-192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32888270

RESUMO

Trichomoniasis, one of the most common non-viral sexually transmitted infections worldwide, is caused by the parasite Trichomonas vaginalis. The pathogen colonizes the human urogenital tract, and the infection is associated with complications such as adverse pregnancy outcomes, cervical cancer, and an increase in HIV transmission. The mechanisms of pathogenicity are multifactorial, and controlling immune responses is essential for infection maintenance. Extracellular purine nucleotides are released by cells in physiological and pathological conditions, and they are hydrolyzed by enzymes called ecto-nucleotidases. The cellular effects of nucleotides and nucleosides occur via binding to purinoceptors, or through the uptake by nucleoside transporters. Altogether, enzymes, receptors and transporters constitute the purinergic signaling, a cellular network that regulates several effects in practically all systems including mammals, helminths, protozoa, bacteria, and fungi. In this context, this review updates the data on purinergic signaling involved in T. vaginalis biology and interaction with host cells, focusing on the characterization of ecto-nucleotidases and on purine salvage pathways. The implications of the final products, the nucleosides adenosine and guanosine, for human neutrophil response and vaginal epithelial cell damage reveal the purinergic signaling as a potential new mechanism for alternative drug targets.


Assuntos
Receptores Purinérgicos/metabolismo , Tricomoníase/metabolismo , Trichomonas vaginalis/metabolismo , Animais , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA