Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(4): e0214999, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958862

RESUMO

Processing of pro-interleukin (IL)-1ß and IL-18 is regulated by multiprotein complexes, known as inflammasomes. Inflammasome activation results in generation of bioactive IL-1ß and IL-18, which can exert potent pro-inflammatory effects. Our aim was to develop a whole blood-based assay to study the inflammasome in vitro and that also can be used as an assay in clinical studies. We show whole blood is a suitable milieu to study inflammasome activation in primary human monocytes. We demonstrated that unprocessed human blood cells can be stimulated to activate the inflammasome by the addition of adenosine 5'-triphosphate (ATP) within a narrow timeframe following lipopolysaccharide (LPS) priming. Stimulation with LPS resulted in IL-1ß release; however, addition of ATP is necessary for "full-blown" inflammasome stimulation resulting in high IL-1ß and IL-18 release. Intracellular cytokine staining demonstrated monocytes are the major producers of IL-1ß in human whole blood cultures, and this was associated with activation of caspase-1/4/5, as detected by a fluorescently labelled caspase-1/4/5 probe. By applying caspase inhibitors, we show that both the canonical inflammasome pathway (via caspase-1) as well as the non-canonical inflammasome pathway (via caspases-4 and 5) can be studied using this whole blood-based model.


Assuntos
Caspases/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Modelos Imunológicos , Monócitos/imunologia , Transdução de Sinais/imunologia , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Interleucina-18/imunologia , Lipopolissacarídeos/toxicidade , Monócitos/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 19(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486375

RESUMO

In pulmonary arterial hypertension (PAH), lung-angioproliferation leads to increased pulmonary vascular resistance, while simultaneous myocardial microvessel loss contributes to right ventricular (RV) failure. Endothelial colony forming cells (ECFC) are highly proliferative, angiogenic cells that may contribute to either pulmonary vascular obstruction or to RV microvascular adaptation. We hypothesize ECFC phenotypes (outgrowth, proliferation, tube formation) are related to markers of disease severity in a prospective cohort-study of 33 PAH and 30 healthy subjects. ECFC were transplanted in pulmonary trunk banded rats with RV failure. The presence of ECFC outgrowth in PAH patients was associated with low RV ejection fraction, low central venous saturation and a shorter time to clinical worsening (5.4 months (0.6⁻29.2) vs. 36.5 months (7.4⁻63.4), p = 0.032). Functionally, PAH ECFC had higher proliferative rates compared to control in vitro, although inter-patient variability was high. ECFC proliferation was inversely related to RV end diastolic volume (R² = 0.39, p = 0.018), but not pulmonary vascular resistance. Tube formation-ability was similar among donors. Normal and highly proliferative PAH ECFC were transplanted in pulmonary trunk banded rats. While no effect on hemodynamic measurements was observed, RV vascular density was restored. In conclusion, we found that ECFC outgrowth associates with high clinical severity in PAH, suggesting recruitment. Transplantation of highly proliferative ECFC restored myocardial vascular density in pulmonary trunk banded rats, while RV functional improvements were not observed.


Assuntos
Biomarcadores , Células Progenitoras Endoteliais/metabolismo , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Adulto , Idoso , Animais , Proliferação de Células , Modelos Animais de Doenças , Células Progenitoras Endoteliais/transplante , Feminino , Hemodinâmica , Humanos , Hipertensão Pulmonar/mortalidade , Hipertensão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Neovascularização Fisiológica , Prognóstico , Ratos , Índice de Gravidade de Doença , Transplante de Células-Tronco , Resistência Vascular , Disfunção Ventricular Direita
3.
Front Med (Lausanne) ; 5: 356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619865

RESUMO

Vascular homeostasis and regeneration in ischemic tissue relies on intrinsic competence of the tissue to rapidly recruit endothelial cells for vascularization. The mononuclear cell (MNC) fraction of blood contains circulating progenitors committed to endothelial lineage. These progenitors give rise to endothelial colony-forming cells (ECFCs) that actively participate in neovascularization of ischemic tissue. To evaluate if the initial clonal outgrowth of ECFCs from cord (CB) and peripheral blood (PB) was stimulated by hypoxic conditions, MNCs obtained from CB and PB were subjected to 20 and 1% O2 cell culture conditions. Clonal outgrowth was followed during a 30 day incubation period. Hypoxia impaired the initial outgrowth of ECFC colonies from CB and also reduced their number that were developing from PB MNCs. Three days of oxygenation (20% O2) prior to hypoxia could overcome the initial CB-ECFC outgrowth. Once proliferating and subcultured the CB-ECFCs growth was only modestly affected by hypoxia; proliferation of PB-ECFCs was reduced to a similar extent (18-30% reduction). Early passages of subcultured CB- and PB-ECFCs contained only viable cells and few if any senescent cells. Tube formation by subcultured PB-ECFCs was also markedly inhibited by continuous exposure to 1% O2. Gene expression profiles point to regulation of the cell cycle and metabolism as major altered gene clusters. Finally we discuss our counterintuitive observations in the context of the important role that hypoxia has in promoting neovascularization.

4.
Angiogenesis ; 19(3): 325-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27043316

RESUMO

Endothelial colony-forming cells (ECFC) are grown from circulating CD34(+) progenitors present in adult peripheral blood, but during in vitro expansion part of the cells lose CD34. To evaluate whether the regulation of CD34 characterizes the angiogenic phenotypical features of PB-ECFCs, we investigated the properties of CD34(+) and CD34(-) ECFCs with respect to their ability to form capillary-like tubes in 3D fibrin matrices, tip-cell gene expression, and barrier integrity. Selection of CD34(+) and CD34(-) ECFCs from subcultured ECFCs was accomplished by magnetic sorting (FACS: CD34(+): 95 % pos; CD34(-): 99 % neg). Both fractions proliferated at same rate, while CD34(+) ECFCs exhibited higher tube-forming capacity and tip-cell gene expression than CD3(4-) cells. However, during cell culture CD34(-) cells re-expressed CD34. Cell-seeding density, cell-cell contact formation, and serum supplements modulated CD34 expression. CD34 expression in ECFCs was strongly suppressed by newborn calf serum. Stimulation with FGF-2, VEGF, or HGF prepared in medium supplemented with 3 % albumin did not change CD34 mRNA or surface expression. Silencing of CD34 with siRNA resulted in strengthening of cell-cell contacts and increased barrier function of ECFC monolayers as measured by ECIS. Furthermore, CD34 siRNA reduced tube formation by ECFC, but did not affect tip-cell gene expression. These findings demonstrate that CD34(+) and CD34(-) cells are different phenotypes of similar cells and that CD34 (1) can be regulated in ECFC; (2) is positively involved in capillary-like sprout formation; (3) is associated but not causally related to tip-cell gene expression; and (4) can affect endothelial barrier function.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/imunologia , Antígenos CD34/metabolismo , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células-Tronco Adultas/metabolismo , Animais , Antígenos CD34/genética , Vasos Sanguíneos/citologia , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/imunologia , Bovinos , Contagem de Células , Proliferação de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Meios de Cultura , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Neovascularização Fisiológica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
5.
Tissue Eng Part B Rev ; 22(5): 371-382, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27032435

RESUMO

PURPOSE OF REVIEW: Tissue regeneration requires proper vascularization. In vivo studies identified that the endothelial colony-forming cells (ECFCs), a subtype of endothelial progenitor cells that can be isolated from umbilical cord or peripheral blood, represent a promising cell source for therapeutic neovascularization. ECFCs not only are able to initiate and facilitate neovascularization in diseased tissue but also can, by acting in a paracrine manner, contribute to the creation of favorable conditions for efficient and appropriate differentiation of tissue-resident stem or progenitor cells. This review outlines the progress in the field of in vivo regenerative and tissue engineering studies and surveys why, when, and how ECFCs can be used for tissue regeneration. RECENT FINDINGS: Reviewed literature that regard human-derived ECFCs in xenogeneic animal models implicates that ECFCs should be considered as an endothelial cell source of preference for induction of neovascularization. Their neovascularization and regenerative potential is augmented in combination with other types of stem or progenitor cells. Biocompatible scaffolds prevascularized with ECFCs interconnect faster and better with the host vasculature. The physical incorporation of ECFCs in newly formed blood vessels grants prolonged release of trophic factors of interest, which also makes ECFCs an interesting cell source candidate for gene therapy and delivery of bioactive compounds in targeted area. SUMMARY: ECFCs possess all biological features to be considered as a cell source of preference for tissue engineering and repair of blood supply. Investigation of regenerative potential of ECFCs in autologous settings in large animal models before clinical application is the next step to clearly outline the most efficient strategy for using ECFCs as treatment.


Assuntos
Células Endoteliais , Animais , Diferenciação Celular , Humanos , Modelos Animais , Neovascularização Fisiológica , Células-Tronco
7.
PLoS One ; 10(6): e0129935, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076450

RESUMO

INTRODUCTION: Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs. RESULTS: The findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS). Isolated ECFCs displayed a higher proliferative ability in PL supplemented medium than cells in FBS medium during 30 days expansion. The cells at 18 cumulative population doubling levels (CPDL) retained their proliferative capacity, showed higher sprouting ability in fibrin matrices upon stimulation with FGF-2 and VEGF-A than the cells at 6 CPDL, and displayed low ß-galactosidase activity. The increased sprouting of PB-ECFCs at 18 CPDL was accompanied by an intrinsic activation of the uPA/uPAR fibrinolytic system. Induced deficiency of uPA (urokinase-type plasminogen activator) or uPAR (uPA receptor) by siRNA technology completely abolished the angiogenic ability of PB-ECFCs in fibrin matrices. During the serial expansion, the gene induction of the markers associated with inflammatory activation such as VCAM-1 and ICAM-1 did not occur or only to limited extent. While further propagation up to 31 CPDL proceeded at a comparable rate, a marked upregulation of inflammatory markers occurred in all donors accompanied by a further increase of uPA/uPAR gene induction. The observed induction of inflammatory genes at later stages of long-term propagation of PB-ECFCs underpins the necessity to determine the right time-point for harvesting of sufficient number of cells with preserved therapeutical potential. CONCLUSION: The presented isolation method and subsequent cell expansion in platelet lysate supplemented culture medium permits suitable large-scale propagation of PB-ECFC. For optimal use of PB-ECFCs in clinical settings, our data suggest that 15-20 CPDL is the most adequate maturation stage.


Assuntos
Plaquetas/metabolismo , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Adulto , Biomarcadores , Técnicas de Cultura de Células , Proliferação de Células , Autorrenovação Celular , Células Progenitoras Endoteliais/metabolismo , Feminino , Fibrina/metabolismo , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Pessoa de Meia-Idade , Neovascularização Fisiológica , Fenótipo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA