Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D304-D310, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37986224

RESUMO

TarBase is a reference database dedicated to produce, curate and deliver high quality experimentally-supported microRNA (miRNA) targets on protein-coding transcripts. In its latest version (v9.0, https://dianalab.e-ce.uth.gr/tarbasev9), it pushes the envelope by introducing virally-encoded miRNAs, interactions leading to target-directed miRNA degradation (TDMD) events and the largest collection of miRNA-gene interactions to date in a plethora of experimental settings, tissues and cell-types. It catalogues ∼6 million entries, comprising ∼2 million unique miRNA-gene pairs, supported by 37 experimental (high- and low-yield) protocols in 172 tissues and cell-types. Interactions are annotated with rich metadata including information on genes/transcripts, miRNAs, samples, experimental contexts and publications, while millions of miRNA-binding locations are also provided at cell-type resolution. A completely re-designed interface with state-of-the-art web technologies, incorporates more features, and allows flexible and ingenious use. The new interface provides the capability to design sophisticated queries with numerous filtering criteria including cell lines, experimental conditions, cell types, experimental methods, species and/or tissues of interest. Additionally, a plethora of fine-tuning capacities have been integrated to the platform, offering the refinement of the returned interactions based on miRNA confidence and expression levels, while boundless local retrieval of the offered interactions and metadata is enabled.


Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs , Genes Virais/genética , Internet , MicroRNAs/genética , MicroRNAs/metabolismo , Animais
2.
Neural Comput Appl ; : 1-11, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37362564

RESUMO

The Covid-19 pandemic made a significant impact on society, including the widespread implementation of lockdowns to prevent the spread of the virus. This measure led to a decrease in face-to-face social interactions and, as an equivalent, an increase in the use of social media platforms, such as Twitter. As part of Industry 4.0, sentiment analysis can be exploited to study public attitudes toward future pandemics and sociopolitical situations in general. This work presents an analysis framework by applying a combination of natural language processing techniques and machine learning algorithms to classify the sentiment of each tweet as positive, or negative. Through extensive experimentation, we expose the ideal model for this task and, subsequently, utilize sentiment predictions to perform time series analysis over the course of the pandemic. In addition, a change point detection algorithm was applied in order to identify the turning points in public attitudes toward the pandemic, which were validated by cross-referencing the news report at that particular period of time. Finally, we study the relationship between sentiment trends on social media and, news coverage of the pandemic, providing insights into the public's perception of the pandemic and its influence on the news.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA