Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cell ; 186(17): 3706-3725.e29, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37562402

RESUMO

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.


Assuntos
Medula Óssea , Doenças do Sistema Nervoso , Crânio , Animais , Humanos , Camundongos , Medula Óssea/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Crânio/citologia , Crânio/diagnóstico por imagem
3.
J Hematol Oncol ; 14(1): 155, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579739

RESUMO

BACKGROUND: Acute myeloid leukaemia (AML) stem cells (LSCs) cause disease relapse. The CD47 "don't eat me signal" is upregulated on LSCs and contributes to immune evasion by inhibiting phagocytosis through interacting with myeloid-specific signal regulatory protein alpha (SIRPα). Activation of macrophages by blocking CD47 has been successful, but the ubiquitous expression of CD47 on healthy cells poses potential limitations for such therapies. In contrast, CD123 is a well-known LSC-specific surface marker utilized as a therapeutic target. Here, we report the development of SIRPα-αCD123 fusion antibodies that localize the disruption of CD47/SIRPα signalling to AML while specifically enhancing LSC clearance. METHODS: SIRPα-αCD123 antibodies were generated by fusing the extracellular domain of SIRPα to an αCD123 antibody. The binding properties of the antibodies were analysed by flow cytometry and surface plasmon resonance. The functional characteristics of the fusion antibodies were determined by antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity assays using primary AML patient cells. Finally, an in vivo engraftment assay was utilized to assess LSC targeting. RESULTS: SIRPα-αCD123 fusion antibodies exhibited increased binding and preferential targeting of CD123+ CD47+ AML cells even in the presence of CD47+ healthy cells. Furthermore, SIRPα-αCD123 fusion antibodies confined disruption of the CD47-SIRPα axis locally to AML cells. In vitro experiments demonstrated that SIRPα-αCD123 antibodies greatly enhanced AML cell phagocytosis mediated by allogeneic and autologous macrophages. Moreover, SIRPα-αCD123 fusion antibodies efficiently targeted LSCs with in vivo engraftment potential. CONCLUSIONS: SIRPα-αCD123 antibodies combine local CD47 blockade with specific LSC targeting in a single molecule, minimize the risk of targeting healthy cells and efficiently eliminate AML LSCs. These results validate SIRPα-αCD123 antibodies as promising therapeutic interventions for AML.


Assuntos
Antígenos de Diferenciação/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CD47/imunologia , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Imunológicos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Mieloide Aguda/imunologia , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/imunologia
4.
Hemasphere ; 5(7): e603, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34235400

RESUMO

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

5.
Exp Hematol ; 78: 35-45, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31562901

RESUMO

Endocannabinoids are lipid mediators that signal via several seven-transmembrane domain G protein-coupled receptors. The endocannabinoid receptor CB2 is expressed on blood cells, including stem cells, and mediates the effects of cannabinoids on the immune system. The role of the endocannabinoid system in immature hematopoiesis is largely elusive. Both direct effects of endocannabinoids on stem cells and indirect effects through endocannabinoid-responsive niche cells like macrophages have been reported. Using two different CB2-deficient mouse models, we studied the role of the endocannabinoid system in immature hematopoiesis. Moreover, we utilized both models to assess the specificity of putative CB2 agonists. As heterodimerization of CB2 and CXCR4, which is highly expressed on hematopoietic stem cells, has already been described, we also assessed potential consequences of CB2 loss for CXCR4/CXCL12 signaling. Overall, no differential effects were observed with any of the compounds tested; the compounds barely induced signaling by themselves, whereas they attenuated CXCL12-induced signals in both CB2-competent and CB2-deficient cells. In vivo experiments were therefore by necessity restricted to loss-of-function studies in knockout (CB2-/-) mice: Except for mild lymphocytosis and slightly elevated circulating progenitor cells, homeostatic hematopoiesis in CB2-/- mice appears to be entirely normal. Mobilization in response to pharmacological stimuli, Plerixafor or G-CSF, was equally potent in wild-type and CB2-/- mice. CB2-/- bone marrow cells reconstituted hematopoiesis in lethally irradiated recipients with engraftment kinetics indistinguishable from those of wild-type grafts. In summary, we found the endocannabinoid system to be largely dispensable for normal murine hematopoiesis.


Assuntos
Endocanabinoides/metabolismo , Regulação da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Modelos Biológicos , Receptor CB2 de Canabinoide/biossíntese , Animais , Endocanabinoides/genética , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Knockout , Receptor CB2 de Canabinoide/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA