Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Biochemistry ; 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39467170

RESUMO

Extracellular signals perceived by 7-transmembrane (7TM)-spanning receptors initiate desensitization that involves the removal of these receptors from the plasma membrane. Agonist binding often evokes phosphorylation in the flexible C-terminal region and/or intracellular loop 3 of many 7TM G-protein-coupled receptors in animal cells, which consequently recruits a cytoplasmic intermediate adaptor, ß-arrestin, resulting in clathrin-mediated endocytosis (CME) and downstream signaling such as transcriptional changes. Some 7TM receptors undergo CME without recruiting ß-arrestin, but it is not clear how. Arrestins are not encoded in the Arabidopsis thaliana genome, yet Arabidopsis cells have a well-characterized signal-induced CME of a 7TM protein, designated Regulator of G Signaling 1 (AtRGS1). Here we show that a component of the retromer complex, Vacuolar Protein Sorting-Associated 26 (VPS26), binds the phosphorylated C-terminal region of AtRGS1 as a VPS26A/B heterodimer to form a complex that is required for downstream signaling. We propose that VPS26 moonlights as an arrestin-like adaptor in the CME of AtRGS1.

2.
JACC Basic Transl Sci ; 9(8): 982-1001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39297139

RESUMO

Phosphorylation of myofilament proteins critically regulates beat-to-beat cardiac contraction and is typically altered in heart failure (HF). ß-Adrenergic activation induces phosphorylation in numerous substrates at the myofilament. Nevertheless, how cardiac ß-adrenoceptors (ßARs) signal to the myofilament in healthy and diseased hearts remains poorly understood. The aim of this study was to uncover the spatiotemporal regulation of local ßAR signaling at the myofilament and thus identify a potential therapeutic target for HF. Phosphoproteomic analysis of substrate phosphorylation induced by different ßAR ligands in mouse hearts was performed. Genetically encoded biosensors were used to characterize cyclic adenosine and guanosine monophosphate signaling and the impacts on excitation-contraction coupling induced by ß1AR ligands at both the cardiomyocyte and whole-heart levels. Myofilament signaling circuitry was identified, including protein kinase G1 (PKG1)-dependent phosphorylation of myosin light chain kinase, myosin phosphatase target subunit 1, and myosin light chain at the myofilaments. The increased phosphorylation of myosin light chain enhances cardiac contractility, with a minimal increase in calcium (Ca2+) cycling. This myofilament signaling paradigm is promoted by carvedilol-induced ß1AR-nitric oxide synthetase 3 (NOS3)-dependent cyclic guanosine monophosphate signaling, drawing a parallel to the ß1AR-cyclic adenosine monophosphate-protein kinase A pathway. In patients with HF and a mouse HF model of myocardial infarction, increasing expression and association of NOS3 with ß1AR were observed. Stimulating ß1AR-NOS3-PKG1 signaling increased cardiac contraction in the mouse HF model. This research has characterized myofilament ß1AR-PKG1-dependent signaling circuitry to increase phosphorylation of myosin light chain and enhance cardiac contractility, with a minimal increase in Ca2+ cycling. The present findings raise the possibility of targeting this myofilament signaling circuitry for treatment of patients with HF.

3.
Nat Commun ; 15(1): 7555, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215004

RESUMO

There are two main families of G protein-coupled receptors that detect odours in humans, the odorant receptors (ORs) and the trace amine-associated receptors (TAARs). Their amino acid sequences are distinct, with the TAARs being most similar to the aminergic receptors such as those activated by adrenaline, serotonin, dopamine and histamine. To elucidate the structural determinants of ligand recognition by TAARs, we have determined the cryo-EM structure of a murine receptor, mTAAR7f, coupled to the heterotrimeric G protein Gs and bound to the odorant N,N-dimethylcyclohexylamine (DMCHA) to an overall resolution of 2.9 Å. DMCHA is bound in a hydrophobic orthosteric binding site primarily through van der Waals interactions and a strong charge-charge interaction between the tertiary amine of the ligand and an aspartic acid residue. This site is distinct and non-overlapping with the binding site for the odorant propionate in the odorant receptor OR51E2. The structure, in combination with mutagenesis data and molecular dynamics simulations suggests that the activation of the receptor follows a similar pathway to that of the ß-adrenoceptors, with the significant difference that DMCHA interacts directly with one of the main activation microswitch residues, Trp6.48.


Assuntos
Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G , Receptores Odorantes , Animais , Camundongos , Sítios de Ligação , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Receptores Odorantes/genética , Simulação de Dinâmica Molecular , Humanos , Odorantes/análise , Ligação Proteica , Ligantes , Células HEK293
4.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461561

RESUMO

There are two main families of G protein-coupled receptors that detect odours in humans, the odorant receptors (ORs) and the trace amine-associated receptors (TAARs). Their amino acid sequences are distinct, with the TAARs being most similar to the aminergic receptors such as those activated by adrenaline, serotonin and histamine. To elucidate the structural determinants of ligand recognition by TAARs, we have determined the cryo-EM structure of a murine receptor, mTAAR7f, coupled to the heterotrimeric G protein Gs and bound to the odorant N,N-dimethylcyclohexylamine (DMCH) to an overall resolution of 2.9 Å. DMCH is bound in a hydrophobic orthosteric binding site primarily through van der Waals interactions and a strong charge-charge interaction between the tertiary amine of the ligand and an aspartic acid residue. This site is distinct and non-overlapping with the binding site for the odorant propionate in the odorant receptor OR51E2. The structure, in combination with mutagenesis data and molecular dynamics simulations suggests that the activation of the receptor follows a similar pathway to that of the ß-adrenoceptors, with the significant difference that DMCH interacts directly with one of the main activation microswitch residues.

5.
Handb Exp Pharmacol ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460660

RESUMO

The first structure of an adrenoceptor (AR), the human ß2-adrenoceptor (hß2AR) was published in 2007 and since then a total of 78 structures (up to June 2022) have been determined by X-ray crystallography and electron cryo-microscopy (cryo-EM) of all three ßARs (ß1, ß2 and ß3) and four out of six αARs (α1B, α2A, α2B, α2C). The structures are in a number of different conformational states, including the inactive state bound to an antagonist, an intermediate state bound to agonist and active states bound to agonist and an intracellular transducer (G protein or arrestin) or transducer mimetic (nanobody). The structures identify molecular details of how ligands bind in the orthosteric binding pocket (OBP; 19 antagonists, 18 agonists) and also how three different small molecule allosteric modulators bind. The structures have been used to define the molecular details of receptor activation and also the molecular determinants for transducer coupling. This chapter will give a brief overview of the structures, receptor activation, a comparison across the different subfamilies and commonalities of ligand-receptor interactions.

6.
Curr Opin Struct Biol ; 80: 102574, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963163

RESUMO

Over the past three years (2020-2022) more structures of GPCRs have been determined than in the previous twenty years (2000-2019), primarily of GPCR complexes that are large enough for structure determination by single-particle cryo-EM. This review will present some structural highlights that have advanced our molecular understanding of promiscuous G protein coupling, how a G protein receptor kinase and ß-arrestins couple to GPCRs, and GPCR dimerisation. We will also discuss advances in the use of gene fusions, nanobodies, and Fab fragments to facilitate the structure determination of GPCRs in the inactive state that, on their own, are too small for structure determination by single-particle cryo-EM.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP/metabolismo
7.
Trends Pharmacol Sci ; 44(3): 162-174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36801017

RESUMO

Up to 1.5 million people die yearly from fungal disease, but the repertoire of antifungal drug classes is minimal and the incidence of drug resistance is rising rapidly. This dilemma was recently declared by the World Health Organization as a global health emergency, but the discovery of new antifungal drug classes remains excruciatingly slow. This process could be accelerated by focusing on novel targets, such as G protein-coupled receptor (GPCR)-like proteins, that have a high likelihood of being druggable and have well-defined biology and roles in disease. We discuss recent successes in understanding the biology of virulence and in structure determination of yeast GPCRs, and highlight new approaches that might pay significant dividends in the urgent search for novel antifungal drugs.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo
8.
Methods Mol Biol ; 2507: 313-325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773589

RESUMO

The thyroid-stimulating hormone receptor (TSHR) is a Class A G protein-coupled receptor (GPCR) that mediates signalling through the hypothalamic-pituitary-thyroid axis. Inappropriate activation of TSHR by autoantibodies or mutations, results in human disease such as Grave's disease and Hashimito's thyroiditis. Therefore, there is a need to develop novel therapeutics targeting the TSHR. Understanding the structure and mechanism of activation of this receptor would help elucidate the pathogenesis of disease and aid drug development. Here, we describe a method for the expression of the human TSHR in a mammalian cell line generated through a lentiviral expression system. The receptor is then purified by affinity chromatography in the ligand-free state and is suitable for structure determination by single-particle electron cryo-microscopy (cryo-EM).


Assuntos
Receptores Acoplados a Proteínas G , Receptores da Tireotropina , Animais , Linhagem Celular , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide , Mamíferos , Receptores Acoplados a Proteínas G/genética , Receptores da Tireotropina/biossíntese , Receptores da Tireotropina/genética , Transdução de Sinais , Tireotropina/metabolismo
9.
Nature ; 603(7902): 743-748, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296853

RESUMO

The fungal class D1 G-protein-coupled receptor (GPCR) Ste2 has a different arrangement of transmembrane helices compared with mammalian GPCRs and a distinct mode of coupling to the heterotrimeric G protein Gpa1-Ste2-Ste181. In addition, Ste2 lacks conserved sequence motifs such as DRY, PIF and NPXXY, which are associated with the activation of class A GPCRs2. This suggested that the activation mechanism of Ste2 may also differ. Here we determined structures of Saccharomyces cerevisiae Ste2 in the absence of G protein in two different conformations bound to the native agonist α-factor, bound to an antagonist and without ligand. These structures revealed that Ste2 is indeed activated differently from other GPCRs. In the inactive state, the cytoplasmic end of transmembrane helix H7 is unstructured and packs between helices H1-H6, blocking the G protein coupling site. Agonist binding results in the outward movement of the extracellular ends of H6 and H7 by 6 Å. On the intracellular surface, the G protein coupling site is formed by a 20 Å outward movement of the unstructured region in H7 that unblocks the site, and a 12 Å inward movement of H6. This is a distinct mechanism in GPCRs, in which the movement of H6 and H7 upon agonist binding facilitates G protein coupling.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Animais , Membrana Celular/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Fator de Acasalamento/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nanoscale ; 13(31): 13519-13528, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477756

RESUMO

Membrane proteins are of fundamental importance to cellular processes and nano-encapsulation strategies that preserve their native lipid bilayer environment are particularly attractive for studying and exploiting these proteins. Poly(styrene-co-maleic acid) (SMA) and related polymers poly(styrene-co-(N-(3-N',N'-dimethylaminopropyl)maleimide)) (SMI) and poly(diisobutylene-alt-maleic acid) (DIBMA) have revolutionised the study of membrane proteins by spontaneously solubilising membrane proteins direct from cell membranes within nanoscale discs of native bilayer called SMA lipid particles (SMALPs), SMILPs and DIBMALPs respectively. This systematic study shows for the first time, that conformational changes of the encapsulated protein are dictated by the solubilising polymer. The photoactivation pathway of rhodopsin (Rho), a G-protein-coupled receptor (GPCR), comprises structurally-defined intermediates with characteristic absorbance spectra that revealed conformational restrictions with styrene-containing SMA and SMI, so that photoactivation proceeded only as far as metarhodopsin-I, absorbing at 478 nm, in a SMALP or SMILP. In contrast, full attainment of metarhodopsin-II, absorbing at 382 nm, was observed in a DIBMALP. Consequently, different intermediate states of Rho could be generated readily by simply employing different SMA-like polymers. Dynamic light-scattering and analytical ultracentrifugation revealed differences in size and thermostability between SMALP, SMILP and DIBMALP. Moreover, encapsulated Rho exhibited different stability in a SMALP, SMILP or DIBMALP. Overall, we establish that SMA, SMI and DIBMA constitute a 'toolkit' of solubilising polymers, so that selection of the appropriate solubilising polymer provides a spectrum of useful attributes for studying membrane proteins.


Assuntos
Proteínas de Membrana , Polímeros , Bicamadas Lipídicas , Maleatos , Poliestirenos , Rodopsina , Estireno
11.
Biochem Soc Trans ; 49(5): 2345-2355, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581758

RESUMO

G protein-coupled receptors (GPCRs) are the largest single family of cell surface receptors encoded by the human genome and they play pivotal roles in co-ordinating cellular systems throughout the human body, making them ideal drug targets. Structural biology has played a key role in defining how receptors are activated and signal through G proteins and ß-arrestins. The application of structure-based drug design (SBDD) is now yielding novel compounds targeting GPCRs. There is thus significant interest from both academia and the pharmaceutical industry in the structural biology of GPCRs as currently only about one quarter of human non-odorant receptors have had their structure determined. Initially, all the structures were determined by X-ray crystallography, but recent advances in electron cryo-microscopy (cryo-EM) now make GPCRs tractable targets for single-particle cryo-EM with comparable resolution to X-ray crystallography. So far this year, 78% of the 99 GPCR structures deposited in the PDB (Jan-Jul 2021) were determined by cryo-EM. Cryo-EM has also opened up new possibilities in GPCR structural biology, such as determining structures of GPCRs embedded in a lipid nanodisc and multiple GPCR conformations from a single preparation. However, X-ray crystallography still has a number of advantages, particularly in the speed of determining many structures of the same receptor bound to different ligands, an essential prerequisite for effective SBDD. We will discuss the relative merits of cryo-EM and X-ray crystallography for the structure determination of GPCRs and the future potential of both techniques.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Receptores Acoplados a Proteínas G/química , Humanos , Ligantes , Conformação Proteica
12.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326250

RESUMO

G protein-coupled receptors (GPCRs) are important pharmaceutical targets for the treatment of a broad spectrum of diseases. Although there are structures of GPCRs in their active conformation with bound ligands and G proteins, the detailed molecular interplay between the receptors and their signaling partners remains challenging to decipher. To address this, we developed a high-sensitivity, high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method to interrogate the first stage of signal transduction. GPCR-G protein complex formation is detected as a proxy for the effect of ligands on GPCR conformation and on coupling selectivity. Over 70 ligand-GPCR-partner protein combinations were studied using as little as 1.25 pmol protein per sample. We determined the selectivity profile and binding affinities of three GPCRs (rhodopsin, beta-1 adrenergic receptor [ß1AR], and angiotensin II type 1 receptor) to engineered Gα-proteins (mGs, mGo, mGi, and mGq) and nanobody 80 (Nb80). We found that GPCRs in the absence of ligand can bind mGo, and that the role of the G protein C terminus in GPCR recognition is receptor-specific. We exemplified our quantification method using ß1AR and demonstrated the allosteric effect of Nb80 binding in assisting displacement of nadolol to isoprenaline. We also quantified complex formation with wild-type heterotrimeric Gαißγ and ß-arrestin-1 and showed that carvedilol induces an increase in coupling of ß-arrestin-1 and Gαißγ to ß1AR. A normalization strategy allows us to quantitatively measure the binding affinities of GPCRs to partner proteins. We anticipate that this methodology will find broad use in screening and characterization of GPCR-targeting drugs.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Arrestina/genética , Arrestina/metabolismo , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Opioides/química , Anticorpos de Cadeia Única , Perus , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
13.
Nature ; 589(7840): 148-153, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268889

RESUMO

G-protein-coupled receptors (GPCRs) are divided phylogenetically into six classes1,2, denoted A to F. More than 370 structures of vertebrate GPCRs (belonging to classes A, B, C and F) have been determined, leading to a substantial understanding of their function3. By contrast, there are no structures of class D GPCRs, which are found exclusively in fungi where they regulate survival and reproduction. Here we determine the structure of a class D GPCR, the Saccharomyces cerevisiae pheromone receptor Ste2, in an active state coupled to the heterotrimeric G protein Gpa1-Ste4-Ste18. Ste2 was purified as a homodimer coupled to two G proteins. The dimer interface of Ste2 is formed by the N terminus, the transmembrane helices H1, H2 and H7, and the first extracellular loop ECL1. We establish a class D1 generic residue numbering system (CD1) to enable comparisons with orthologues and with other GPCR classes. The structure of Ste2 bears similarities in overall topology to class A GPCRs, but the transmembrane helix H4 is shifted by more than 20 Å and the G-protein-binding site is a shallow groove rather than a cleft. The structure provides a template for the design of novel drugs to target fungal GPCRs, which could be used to treat numerous intractable fungal diseases4.


Assuntos
Microscopia Crioeletrônica , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Multimerização Proteica , Receptores de Fator de Acasalamento/química , Receptores de Fator de Acasalamento/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Precursores de Proteínas/metabolismo , Alinhamento de Sequência
14.
Nature ; 583(7818): 862-866, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555462

RESUMO

The ß1-adrenoceptor (ß1AR) is a G-protein-coupled receptor (GPCR) that couples1 to the heterotrimeric G protein Gs. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of ß-arrestin 1 (ßarr1, also known as arrestin 2), which displaces Gs and induces signalling through the MAP kinase pathway2. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism3-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects4. To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the ß1AR-ßarr1 complex in lipid nanodiscs bound to the biased agonist formoterol5, and the crystal structure of formoterol-bound ß1AR coupled to the G-protein-mimetic nanobody6 Nb80. ßarr1 couples to ß1AR in a manner distinct to that7 of Gs coupling to ß2AR-the finger loop of ßarr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal α5 helix of Gs. The conformation of the finger loop in ßarr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin8. ß1AR coupled to ßarr1 shows considerable differences in structure compared with ß1AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of ß1AR, and find that formoterol has a lower affinity for the ß1AR-ßarr1 complex than for the ß1AR-Gs complex. The structural differences between these complexes of ß1AR provide a foundation for the design of small molecules that could bias signalling in the ß-adrenoceptors.


Assuntos
Microscopia Crioeletrônica , Fumarato de Formoterol/química , Fumarato de Formoterol/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/ultraestrutura , beta-Arrestina 1/química , beta-Arrestina 1/ultraestrutura , Sequência de Aminoácidos , Animais , Sítios de Ligação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Complexos Multiproteicos , Receptores Adrenérgicos beta 1/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Cadeia Única/ultraestrutura , Peixe-Zebra , beta-Arrestina 1/metabolismo
15.
Biochemistry ; 59(23): 2125-2134, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32437610

RESUMO

The structural and functional properties of G protein-coupled receptors (GPCRs) are often studied in a detergent micellar environment, but many GPCRs tend to denature or aggregate in short alkyl chain detergents. In our previous work [Lee, S., et al. (2016) J. Am. Chem. Soc. 138, 15425-15433], we showed that GPCRs in alkyl glucosides were highly dynamic, resulting in the penetration of detergent molecules between transmembrane α-helices, which is the initial step in receptor denaturation. Although this was not observed for GPCRs in dodecyl maltoside (DDM, also known as lauryl maltoside), even this detergent is not mild enough to preserve the integrity of many GPCRs during purification. Lauryl maltose neopentylglycol (LMNG) detergents have been found to have significant advantages for purifying GPCRs in a native state as they impart more stability to the receptor than DDM. To gain insights into how they stabilize GPCRs, we used atomistic molecular dynamics simulations of wild type adenosine A2A receptor (WT-A2AR), thermostabilized A2AR (tA2AR), and wild type ß2-adrenoceptor (ß2AR) in a variety of detergents (LMNG, DMNG, OGNG, and DDM). Analysis of molecular dynamics simulations of tA2AR in LMNG, DMNG, and OGNG showed that this series of detergents exhibited behavior very similar to that of an analogous series of detergents DDM, DM, and OG in our previous study. However, there was a striking difference upon comparison of the behavior of LMNG to that of DDM. LMNG showed considerably less motion than DDM, which resulted in the enhanced density of the aliphatic chains around the hydrophobic regions of the receptor and considerably more hydrogen bond formation between the head groups. This contributed to enhanced interaction energies between both detergent molecules and between the receptor and detergent, explaining the enhanced stability of GPCRs purified in this detergent. Branched detergents occlude between transmembrane helices and reduce their flexibility. Our results provide a rational foundation to develop detergent variants for stabilizing membrane proteins.


Assuntos
Detergentes/farmacologia , Micelas , Receptores Acoplados a Proteínas G/química , Detergentes/química , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Estabilidade Proteica/efeitos dos fármacos
16.
Cell ; 181(1): 81-91, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32243800

RESUMO

Structures of 70 unique G protein-coupled receptors (GPCRs) have been determined, with over 370 structures in total bound to different ligands and the receptors in various conformational states. Structure-based drug design has been applied to an increasing number of GPCR targets over the past decade and now a few of these drug candidates have entered clinical trials. Given the length of time required for a drug to reach the market, there are no documented examples of licensed drugs being developed with the aid of a structure, but this is likely to change as current efforts come to fruition.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Receptores Acoplados a Proteínas G/química , Humanos , Ligantes , Conformação Molecular , Estrutura Molecular
17.
J Vis Exp ; (157)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225143

RESUMO

The key to determining crystal structures of membrane protein complexes is the quality of the sample prior to crystallization. In particular, the choice of detergent is critical, because it affects both the stability and monodispersity of the complex. We recently determined the crystal structure of an active state of bovine rhodopsin coupled to an engineered G protein, mini-Go, at 3.1 Å resolution. Here, we detail the procedure for optimizing the preparation of the rhodopsin-mini-Go complex. Dark-state rhodopsin was prepared in classical and neopentyl glycol (NPG) detergents, followed by complex formation with mini-Go under light exposure. The stability of the rhodopsin was assessed by ultraviolet-visible (UV-VIS) spectroscopy, which monitors the reconstitution into rhodopsin of the light-sensitive ligand, 9-cis retinal. Automated size-exclusion chromatography (SEC) was used to characterize the monodispersity of rhodopsin and the rhodopsin-mini-Go complex. SDS-polyacrylamide electrophoresis (SDS-PAGE) confirmed the formation of the complex by identifying a 1:1 molar ratio between rhodopsin and mini-Go after staining the gel with Coomassie blue. After cross-validating all this analytical data, we eliminated unsuitable detergents and continued with the best candidate detergent for large-scale preparation and crystallization. An additional problem arose from the heterogeneity of N-glycosylation. Heterologously-expressed rhodopsin was observed on SDS-PAGE to have two different N-glycosylated populations, which would probably have hindered crystallogenesis. Therefore, different deglycosylation enzymes were tested, and endoglycosidase F1 (EndoF1) produced rhodopsin with a single species of N-glycosylation. With this strategic pipeline for characterizing protein quality, preparation of the rhodopsin-mini-Go complex was optimized to deliver the crystal structure. This was only the third crystal structure of a GPCR-G protein signaling complex. This approach can also be generalized for other membrane proteins and their complexes to facilitate sample preparation and structure determination.


Assuntos
Cristalização/métodos , Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais
18.
Annu Rev Pharmacol Toxicol ; 60: 51-71, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31348870

RESUMO

Electron cryo-microscopy (cryo-EM) has revolutionized structure determination of membrane proteins and holds great potential for structure-based drug discovery. Here we discuss the potential of cryo-EM in the rational design of therapeutics for membrane proteins compared to X-ray crystallography. We also detail recent progress in the field of drug receptors, focusing on cryo-EM of two protein families with established therapeutic value, the γ-aminobutyric acid A receptors (GABAARs) and G protein-coupled receptors (GPCRs). GABAARs are pentameric ion channels, and cryo-EM structures of physiological heteromeric receptors in a lipid environment have uncovered the molecular basis of receptor modulation by drugs such as diazepam. The structures of ten GPCR-G protein complexes from three different classes of GPCRs have now been determined by cryo-EM. These structures give detailed insights into molecular interactions with drugs, GPCR-G protein selectivity, how accessory membrane proteins alter receptor-ligand pharmacology, and the mechanism by which HIV uses GPCRs to enter host cells.


Assuntos
Microscopia Crioeletrônica/métodos , Desenvolvimento de Medicamentos/métodos , Receptores de Droga/metabolismo , Cristalografia por Raios X , Descoberta de Drogas/métodos , Humanos , Proteínas de Membrana/metabolismo , Receptores de Droga/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de GABA-A/metabolismo
19.
Biophys J ; 117(11): 2228-2239, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31703801

RESUMO

Although the three-dimensional structures of G-protein coupled receptors (GPCRs), the largest superfamily of drug targets, have enabled structure-based drug design, there are no structures available for 87% of GPCRs. This is due to the stiff challenge in purifying the inherently flexible GPCRs. Identifying thermostabilized mutant GPCRs via systematic alanine scanning mutations has been a successful strategy in stabilizing GPCRs, but it remains a daunting task for each GPCR. We developed a computational method that combines sequence-, structure-, and dynamics-based molecular properties of GPCRs that recapitulate GPCR stability, with four different machine learning methods to predict thermostable mutations ahead of experiments. This method has been trained on thermostability data for 1231 mutants, the largest publicly available data set. A blind prediction for thermostable mutations of the complement factor C5a receptor 1 retrieved 36% of the thermostable mutants in the top 50 prioritized mutants compared to 3% in the first 50 attempts using systematic alanine scanning.


Assuntos
Simulação de Dinâmica Molecular , Mutação , Receptor da Anafilatoxina C5a/química , Análise de Sequência/métodos , Alanina/química , Alanina/genética , Substituição de Aminoácidos , Células HEK293 , Humanos , Aprendizado de Máquina , Domínios Proteicos , Estabilidade Proteica , Receptor da Anafilatoxina C5a/genética
20.
J Mol Biol ; 431(15): 2777-2789, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31158365

RESUMO

Proteins that perform active transport must alternate the access of a binding site, first to one side of a membrane and then to the other, resulting in the transport of bound substrates across the membrane. To better understand this process, we sought to identify mutants of the small multidrug resistance transporter EmrE with reduced rates of alternating access. We performed extensive scanning mutagenesis by changing every amino acid residue to Val, Ala, or Gly, and then screening the drug resistance phenotypes of the resulting mutants. We identified EmrE mutants that had impaired transport activity but retained the ability to bind substrate and further tested their alternating access rates using NMR. Ultimately, we were able to identify a single mutation, S64V, which significantly reduced the rate of alternating access but did not impair substrate binding. Six other transport-impaired mutants did not have reduced alternating access rates, highlighting the importance of other aspects of the transport cycle to achieve drug resistance activity in vivo. To better understand the transport cycle of EmrE, efforts are now underway to determine a high-resolution structure using the S64V mutant identified here.


Assuntos
Substituição de Aminoácidos , Antiporters/genética , Antiporters/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sítios de Ligação , Transporte Biológico , Resistência a Múltiplos Medicamentos , Escherichia coli/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA