Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Pharmacol Sci ; 43(11): 940-956, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779966

RESUMO

Patients with diabetes have an increased risk of developing heart failure, preceded by (often asymptomatic) cardiac abnormalities, collectively called diabetic cardiomyopathy (DC). Diabetic heart failure lacks effective treatment, remaining an urgent, unmet clinical need. Although structural and functional characteristics of the diabetic human heart are well defined, clinical studies lack the ability to pinpoint the specific mechanisms responsible for DC. Preclinical animal models represent a vital component for understanding disease aetiology, which is essential for the discovery of new targeted treatments for diabetes-induced heart failure. In this review, we describe the current landscape of preclinical DC models (genetic, pharmacologically induced, and diet-induced models), highlighting their strengths and weaknesses and alignment to features of the human disease. Finally, we provide tools, resources, and recommendations to assist future preclinical translation addressing this knowledge gap.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Humanos
2.
Cardiovasc Res ; 118(1): 212-225, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576380

RESUMO

AIMS: The glucose-driven enzymatic modification of myocardial proteins by the sugar moiety, ß-N-acetylglucosamine (O-GlcNAc), is increased in pre-clinical models of diabetes, implicating protein O-GlcNAc modification in diabetes-induced heart failure. Our aim was to specifically examine cardiac manipulation of the two regulatory enzymes of this process on the cardiac phenotype, in the presence and absence of diabetes, utilising cardiac-targeted recombinant-adeno-associated viral-vector-6 (rAAV6)-mediated gene delivery. METHODS AND RESULTS: In human myocardium, total protein O-GlcNAc modification was elevated in diabetic relative to non-diabetic patients, and correlated with left ventricular (LV) dysfunction. The impact of rAAV6-delivered O-GlcNAc transferase (rAAV6-OGT, facilitating protein O-GlcNAcylation), O-GlcNAcase (rAAV6-OGA, facilitating de-O-GlcNAcylation), and empty vector (null) were determined in non-diabetic and diabetic mice. In non-diabetic mice, rAAV6-OGT was sufficient to impair LV diastolic function and induce maladaptive cardiac remodelling, including cardiac fibrosis and increased Myh-7 and Nppa pro-hypertrophic gene expression, recapitulating characteristics of diabetic cardiomyopathy. In contrast, rAAV6-OGA (but not rAAV6-OGT) rescued LV diastolic function and adverse cardiac remodelling in diabetic mice. Molecular insights implicated impaired cardiac PI3K(p110α)-Akt signalling as a potential contributing mechanism to the detrimental consequences of rAAV6-OGT in vivo. In contrast, rAAV6-OGA preserved PI3K(p110α)-Akt signalling in diabetic mouse myocardium in vivo and prevented high glucose-induced impairments in mitochondrial respiration in human cardiomyocytes in vitro. CONCLUSION: Maladaptive protein O-GlcNAc modification is evident in human diabetic myocardium, and is a critical regulator of the diabetic heart phenotype. Selective targeting of cardiac protein O-GlcNAcylation to restore physiological O-GlcNAc balance may represent a novel therapeutic approach for diabetes-induced heart failure.


Assuntos
Antígenos de Neoplasias/metabolismo , Cardiomiopatias Diabéticas/enzimologia , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Miócitos Cardíacos/enzimologia , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Idoso , Animais , Antígenos de Neoplasias/genética , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Fibrose , Regulação da Expressão Gênica , Glicosilação , Histona Acetiltransferases/genética , Humanos , Hialuronoglucosaminidase/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
4.
Front Pharmacol ; 12: 719290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690762

RESUMO

Diabetes is a major contributor to the increasing burden of heart failure prevalence globally, at least in part due to a disease process termed diabetic cardiomyopathy. Diabetic cardiomyopathy is characterised by cardiac structural changes that are caused by chronic exposure to the diabetic milieu. These structural changes are a major cause of left ventricular (LV) wall stiffness and the development of LV dysfunction. In the current study, we investigated the therapeutic potential of a cardiac-targeted bone morphogenetic protein 7 (BMP7) gene therapy, administered once diastolic dysfunction was present, mimicking the timeframe in which clinical management of the cardiomyopathy would likely be desired. Following 18 weeks of untreated diabetes, mice were administered with a single tail-vein injection of recombinant adeno-associated viral vector (AAV), containing the BMP7 gene, or null vector. Our data demonstrated, after 8 weeks of treatment, that rAAV6-BMP7 treatment exerted beneficial effects on LV functional and structural changes. Importantly, diabetes-induced LV dysfunction was significantly attenuated by a single administration of rAAV6-BMP7. This was associated with a reduction in cardiac fibrosis, cardiomyocyte hypertrophy and cardiomyocyte apoptosis. In conclusion, BMP7 gene therapy limited pathological remodelling in the diabetic heart, conferring an improvement in cardiac function. These findings provide insight for the potential development of treatment strategies urgently needed to delay or reverse LV pathological remodelling in the diabetic heart.

6.
Front Physiol ; 12: 672252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539423

RESUMO

People affected by diabetes are at an increased risk of developing heart failure than their non-diabetic counterparts, attributed in part to a distinct cardiac pathology termed diabetic cardiomyopathy. Mitochondrial dysfunction and excess reactive oxygen species (ROS) have been implicated in a range of diabetic complications and are a common feature of the diabetic heart. In this study, we sought to characterise impairments in mitochondrial structure and function in a recently described experimental mouse model of diabetic cardiomyopathy. Diabetes was induced in 6-week-old male FVB/N mice by the combination of three consecutive-daily injections of low-dose streptozotocin (STZ, each 55 mg/kg i.p.) and high-fat diet (42% fat from lipids) for 26 weeks. At study end, diabetic mice exhibited elevated blood glucose levels and impaired glucose tolerance, together with increases in both body weight gain and fat mass, replicating several aspects of human type 2 diabetes. The myocardial phenotype of diabetic mice included increased myocardial fibrosis and left ventricular (LV) diastolic dysfunction. Elevated LV superoxide levels were also evident. Diabetic mice exhibited a spectrum of LV mitochondrial changes, including decreased mitochondria area, increased levels of mitochondrial complex-III and complex-V protein abundance, and reduced complex-II oxygen consumption. In conclusion, these data suggest that the low-dose STZ-high fat experimental model replicates some of the mitochondrial changes seen in diabetes, and as such, this model may be useful to study treatments that target the mitochondria in diabetes.

7.
Clin Sci (Lond) ; 135(11): 1369-1387, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34076247

RESUMO

Diabetes increases the prevalence of heart failure by 6-8-fold, independent of other comorbidities such as hypertension and coronary artery disease, a phenomenon termed diabetic cardiomyopathy. Several key signalling pathways have been identified that drive the pathological changes associated with diabetes-induced heart failure. This has led to the development of multiple pharmacological agents that are currently available for clinical use. While fairly effective at delaying disease progression, these treatments do not reverse the cardiac damage associated with diabetes. One potential alternative avenue for targeting diabetes-induced heart failure is the use of adeno-associated viral vector (AAV) gene therapy, which has shown great versatility in a multitude of disease settings. AAV gene therapy has the potential to target specific cells or tissues, has a low host immune response and has the possibility to represent a lifelong cure, not possible with current conventional pharmacotherapies. In this review, we will assess the therapeutic potential of AAV gene therapy as a treatment for diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus/genética , Cardiomiopatias Diabéticas/genética , Terapia Genética , Vetores Genéticos/uso terapêutico , Animais , Dependovirus/genética , Diabetes Mellitus/terapia , Cardiomiopatias Diabéticas/terapia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos
8.
Cardiovasc Drugs Ther ; 34(6): 823-834, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979176

RESUMO

PURPOSE: HFpEF (heart failure with preserved ejection fraction) is a major consequence of diabetic cardiomyopathy with no effective treatments. Here, we have characterized Akita mice as a preclinical model of HFpEF and used it to confirm the therapeutic efficacy of the mitochondria-targeted dicarbonyl scavenger, MitoGamide. METHODS AND RESULTS: A longitudinal echocardiographic analysis confirmed that Akita mice develop diastolic dysfunction with reduced E peak velocity, E/A ratio and extended isovolumetric relaxation time (IVRT), while the systolic function remains comparable with wild-type mice. The myocardium of Akita mice had a decreased ATP/ADP ratio, elevated mitochondrial oxidative stress and increased organelle density, compared with that of wild-type mice. MitoGamide, a mitochondria-targeted 1,2-dicarbonyl scavenger, exhibited good stability in vivo, uptake into cells and mitochondria and reactivity with dicarbonyls. Treatment of Akita mice with MitoGamide for 12 weeks significantly improved the E/A ratio compared with the vehicle-treated group. CONCLUSION: Our work confirms that the Akita mouse model of diabetes replicates key clinical features of diabetic HFpEF, including cardiac and mitochondrial dysfunction. Furthermore, in this independent study, MitoGamide treatment improved diastolic function in Akita mice.


Assuntos
Benzamidas/farmacologia , Fármacos Cardiovasculares/farmacologia , Cardiomiopatias Diabéticas/prevenção & controle , Insuficiência Cardíaca/prevenção & controle , Volume Sistólico/efeitos dos fármacos , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Produtos Finais de Glicação Avançada/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
9.
ACS Pharmacol Transl Sci ; 3(1): 11-20, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32259084

RESUMO

The prevalence of diabetes has reached epidemic proportions and is placing a significant burden on healthcare systems globally. Diabetes has a detrimental impact on many organs in the human body, including accelerating the development of micro- and macrovascular complications. Current therapeutic options to treat diabetic complications have their limitations. Importantly, many slow but fail to reverse the progression of diabetic complications. Bone morphogenetic proteins (BMPs) are a highly conserved subgroup of the transforming growth factor ß (TGFß) superfamily, signaling via serine/threonine kinase receptors, that have recently been implicated in glucose homeostasis and insulin resistance in the setting of diabetes. Downstream of the receptors, the signal can be transduced via the canonical Smad-dependent pathway or the noncanonical Smad-independent pathways. BMPs are essential in organ development, tissue homeostasis, and, as expected, disease pathogenesis. In fact, deletion of BMPs can be embryonically lethal or result in severe organ abnormalities. This review outlines the BMP signaling pathway and its relevance to diabetic complications, namely, diabetic nephropathy, diabetes-associated cardiovascular diseases, and diabetic retinopathy. Understanding the complexities of BMP signaling and particularly its tissue-, cellular-, and time-dependent actions will help delineate the underlying pathogenesis of the disease and may ultimately be harnessed in the treatment of diabetes-induced complications. This would replicate progress made in numerous other diseases, including cancer and atherosclerosis.

10.
Am J Physiol Heart Circ Physiol ; 318(4): H840-H852, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142359

RESUMO

Diabetic cardiomyopathy is a distinct form of heart disease that represents a major cause of death and disability in diabetic patients, particularly, the more prevalent type 2 diabetes patient population. In the current study, we investigated whether administration of recombinant adeno-associated viral vectors carrying a constitutively active phosphoinositide 3-kinase (PI3K)(p110α) construct (rAAV6-caPI3K) at a clinically relevant time point attenuates diabetic cardiomyopathy in a preclinical type 2 diabetes (T2D) model. T2D was induced by a combination of a high-fat diet (42% energy intake from lipid) and low-dose streptozotocin (three consecutive intraperitoneal injections of 55 mg/kg body wt), and confirmed by increased body weight, mild hyperglycemia, and impaired glucose tolerance (all P < 0.05 vs. nondiabetic mice). After 18 wk of untreated diabetes, impaired left ventricular (LV) systolic dysfunction was evident, as confirmed by reduced fractional shortening and velocity of circumferential fiber shortening (Vcfc, all P < 0.01 vs. baseline measurement). A single tail vein injection of rAAV6-caPI3K gene therapy (2×1011vector genomes) was then administered. Mice were followed for an additional 8 wk before end point. A single injection of cardiac targeted rAAV6-caPI3K attenuated diabetes-induced cardiac remodeling by limiting cardiac fibrosis (reduced interstitial and perivascular collagen deposition, P < 0.01 vs. T2D mice) and cardiomyocyte hypertrophy (reduced cardiomyocyte size and Nppa gene expression, P < 0.001 and P < 0.05 vs. T2D mice, respectively). The diabetes-induced LV systolic dysfunction was reversed with rAAV6-caPI3K, as demonstrated by improved fractional shortening and velocity of circumferential fiber shortening (all P < 0.05 vs pre-AAV measurement). This cardioprotection occurred in combination with reduced LV reactive oxygen species (P < 0.05 vs. T2D mice) and an associated decrease in markers of endoplasmic reticulum stress (reduced Grp94 and Chop, all P < 0.05 vs. T2D mice). Together, our findings demonstrate that a cardiac-selective increase in PI3K(p110α), via rAAV6-caPI3K, attenuates T2D-induced diabetic cardiomyopathy, providing proof of concept for potential translation to the clinic.NEW & NOTEWORTHY Diabetes remains a major cause of death and disability worldwide (and its resultant heart failure burden), despite current care. The lack of existing management of heart failure in the context of the poorer prognosis of concomitant diabetes represents an unmet clinical need. In the present study, we now demonstrate that delayed intervention with PI3K gene therapy (rAAV6-caPI3K), administered as a single dose in mice with preexisting type 2 diabetes, attenuates several characteristics of diabetic cardiomyopathy, including diabetes-induced impairments in cardiac remodeling, oxidative stress, and function. Our discovery here contributes to the previous body of work, suggesting the cardioprotective effects of PI3K(p110α) could be a novel therapeutic approach to reduce the progression to heart failure and death in diabetes-affected patients.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/terapia , Terapia Genética/métodos , Animais , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/etiologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático , Fibrose , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Masculino , Camundongos , Miocárdio/metabolismo , Espécies Reativas de Oxigênio , Remodelação Ventricular
12.
Front Physiol ; 10: 1395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798462

RESUMO

The increasing burden of heart failure globally can be partly attributed to the increased prevalence of diabetes, and the subsequent development of a distinct form of heart failure known as diabetic cardiomyopathy. Despite this, effective treatment options have remained elusive, due partly to the lack of an experimental model that adequately mimics human disease. In the current study, we combined three consecutive daily injections of low-dose streptozotocin with high-fat diet, in order to recapitulate the long-term complications of diabetes, with a specific focus on the diabetic heart. At 26 weeks of diabetes, several metabolic changes were observed including elevated blood glucose, glycated haemoglobin, plasma insulin and plasma C-peptide. Further analysis of organs commonly affected by diabetes revealed diabetic nephropathy, underlined by renal functional and structural abnormalities, as well as progressive liver damage. In addition, this protocol led to robust left ventricular diastolic dysfunction at 26 weeks with preserved systolic function, a key characteristic of patients with type 2 diabetes-induced cardiomyopathy. These observations corresponded with cardiac structural changes, namely an increase in myocardial fibrosis, as well as activation of several cardiac signalling pathways previously implicated in disease progression. It is hoped that development of an appropriate model will help to understand some the pathophysiological mechanisms underlying the accelerated progression of diabetic complications, leading ultimately to more efficacious treatment options.

13.
Cardiovasc Drugs Ther ; 33(6): 669-674, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31654171

RESUMO

PURPOSE: Methylglyoxal, a by-product of glycolysis and a precursor in the formation of advanced glycation end-products, is significantly elevated in the diabetic myocardium. Therefore, we sought to investigate the mitochondria-targeted methylglyoxal scavenger, MitoGamide, in an experimental model of spontaneous diabetic cardiomyopathy. METHODS: Male 6-week-old Akita or wild type mice received daily oral gavage of MitoGamide or vehicle for 10 weeks. Several morphological and systemic parameters were assessed, as well as cardiac function by echocardiography. RESULTS: Akita mice were smaller in size than wild type counterparts in terms of body weight and tibial length. Akita mice exhibited elevated blood glucose and glycated haemoglobin. Total heart and individual ventricles were all smaller in Akita mice. None of the aforementioned parameters was impacted by MitoGamide treatment. Echocardiographic analysis confirmed that cardiac dimensions were smaller in Akita hearts. Diastolic dysfunction was evident in Akita mice, and notably, MitoGamide treatment preferentially improved several of these markers, including e'/a' ratio and E/e' ratio. CONCLUSIONS: Our findings suggest that MitoGamide, a novel mitochondria-targeted approach, offers cardioprotection in experimental diabetes and therefore may offer therapeutic potential for the treatment of cardiomyopathy in patients with diabetes.


Assuntos
Amidas/farmacologia , Benzamidas/farmacologia , Cardiotônicos/farmacologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Difenilamina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Aldeído Pirúvico/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Benzamidas/uso terapêutico , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Insulina/genética , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mutação
14.
Front Pharmacol ; 10: 269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001111

RESUMO

The anti-inflammatory, pro-resolving annexin-A1 protein acts as an endogenous brake against exaggerated cardiac necrosis, inflammation, and fibrosis following myocardial infarction (MI) in vivo. Little is known, however, regarding the cardioprotective actions of the N-terminal-derived peptide of annexin A1, Ac2-26, particularly beyond its anti-necrotic actions in the first few hours after an ischemic insult. In this study, we tested the hypothesis that exogenous Ac2-26 limits cardiac injury in vitro and in vivo. Firstly, we demonstrated that Ac2-26 limits cardiomyocyte death both in vitro and in mice subjected to ischemia-reperfusion (I-R) injury in vivo (Ac2-26, 1 mg/kg, i.v. just prior to post-ischemic reperfusion). Further, Ac2-26 (1 mg/kg i.v.) reduced cardiac inflammation (after 48 h reperfusion), as well as both cardiac fibrosis and apoptosis (after 7-days reperfusion). Lastly, we investigated whether Ac2-26 preserved cardiac function after MI. Ac2-26 (1 mg/kg/day s.c., osmotic pump) delayed early cardiac dysfunction 1 week post MI, but elicited no further improvement 4 weeks after MI. Taken together, our data demonstrate the first evidence that Ac2-26 not only preserves cardiomyocyte survival in vitro, but also offers cardioprotection beyond the first few hours after an ischemic insult in vivo. Annexin-A1 mimetics thus represent a potential new therapy to improve cardiac outcomes after MI.

16.
Clin Transl Immunology ; 7(4): e1016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713471

RESUMO

Diabetes is considered a major burden on the healthcare system of Western and non-Western societies with the disease reaching epidemic proportions globally. Diabetic patients are highly susceptible to developing micro- and macrovascular complications, which contribute significantly to morbidity and mortality rates. Over the past decade, a plethora of research has demonstrated that oxidative stress and inflammation are intricately linked and significant drivers of these diabetic complications. Thus, the focus now has been towards specific mechanism-based strategies that can target both oxidative stress and inflammatory pathways to improve the outcome of disease burden. This review will focus on the mechanisms that drive these diabetic complications and the feasibility of emerging new therapies to combat oxidative stress and inflammation in the diabetic milieu.

17.
Front Physiol ; 9: 114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515457

RESUMO

It is now increasingly appreciated that inflammation is not limited to the control of pathogens by the host, but rather that sterile inflammation which occurs in the absence of viral or bacterial pathogens, accompanies numerous disease states, none more so than the complications that arise as a result of hyperglycaemia. Individuals with type 1 or type 2 diabetes mellitus (T1D, T2D) are at increased risk of developing cardiac and vascular complications. Glucose and blood pressure lowering therapies have not stopped the advance of these morbidities that often lead to fatal heart attacks and/or stroke. A unifying mechanism of hyperglycemia-induced cellular damage was initially proposed to link elevated blood glucose levels with oxidative stress and the dysregulation of metabolic pathways. Pre-clinical evidence has, in most cases, supported this notion. However, therapeutic strategies to lessen oxidative stress in clinical trials has not proved efficacious, most likely due to indiscriminate targeting by antioxidants such as vitamins. Recent evidence now suggests that oxidative stress is a major driver of inflammation and vice versa, with the latest findings suggesting not only a key role for inflammatory pathways underpinning metabolic and haemodynamic dysfunction in diabetes, but furthermore that these perturbations are driven by activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. This review will address these latest findings with an aim of highlighting the interconnectivity between oxidative stress, NLRP3 activation and inflammation as it pertains to cardiac and vascular injury sustained by diabetes. Current therapeutic strategies to lessen both oxidative stress and inflammation will be emphasized. This will be placed in the context of improving the burden of these diabetic complications.

18.
Sci Rep ; 7(1): 16615, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192208

RESUMO

Endogenous anti-inflammatory annexin-A1 (ANX-A1) plays an important role in preserving left ventricular (LV) viability and function after ischaemic insults in vitro, but its long-term cardioprotective actions in vivo are largely unknown. We tested the hypothesis that ANX-A1-deficiency exaggerates inflammation, haematopoietic stem progenitor cell (HSPC) activity and LV remodelling in response to myocardial ischaemia in vivo. Adult ANX - A1 -/- mice subjected to coronary artery occlusion exhibited increased infarct size and LV macrophage content after 24-48 h reperfusion compared with wildtype (WT) counterparts. In addition, ANX - A1 -/- mice exhibited greater expansion of HSPCs and altered pattern of HSPC mobilisation 8 days post-myocardial infarction, with increased circulating neutrophils and platelets, consistent with increased cardiac inflammation as a result of increased myeloid invading injured myocardium in response to MI. Furthermore, ANX - A1 -/- mice exhibited significantly increased expression of LV pro-inflammatory and pro-fibrotic genes and collagen deposition after MI compared to WT counterparts. ANX-A1-deficiency increased cardiac necrosis, inflammation, hypertrophy and fibrosis following MI, accompanied by exaggerated HSPC activity and impaired macrophage phenotype. These findings suggest that endogenous ANX-A1 regulates mobilisation and differentiation of HSPCs. Limiting excessive monocyte/neutrophil production may limit LV damage in vivo. Our findings support further development of novel ANX-A1-based therapies to improve cardiac outcomes after MI.


Assuntos
Anexina A1/genética , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Infarto do Miocárdio/metabolismo , Miocardite/etiologia , Animais , Anexina A1/metabolismo , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/complicações , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/genética , Miocardite/metabolismo , Miocardite/patologia , Necrose , Ratos
19.
Diab Vasc Dis Res ; 14(5): 423-433, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28565941

RESUMO

Diabetic cardiomyopathy is a major contributor to the increasing burden of heart failure globally. Effective therapies remain elusive, in part due to the incomplete understanding of the mechanisms underlying diabetes-induced myocardial injury. The objective of this study was to assess the direct impact of insulin replacement on left ventricle structure and function in a rat model of diabetes. Male Sprague-Dawley rats were administered streptozotocin (55 mg/kg i.v.) or citrate vehicle and were followed for 8 weeks. A subset of diabetic rats were allocated to insulin replacement (6 IU/day insulin s.c.) for the final 4 weeks of the 8-week time period. Diabetes induced the characteristic systemic complications of diabetes (hyperglycaemia, polyuria, kidney hypertrophy) and was accompanied by marked left ventricle remodelling (cardiomyocyte hypertrophy, left ventricle collagen content) and diastolic dysfunction (transmitral E/A, left ventricle-dP/dt). Importantly, these systemic and cardiac impairments were ameliorated markedly following insulin replacement, and moreover, markers of the diabetic cardiomyopathy phenotype were significantly correlated with the extent of hyperglycaemia. In summary, these data suggest that poor glucose control directly contributes towards the underlying features of experimental diabetic cardiomyopathy, at least in the early stages, and that adequate replacement ameliorates this.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Ventrículos do Coração/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Estreptozocina , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Progressão da Doença , Fibrose , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Miocardite/patologia , Miocardite/fisiopatologia , Miocardite/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Fatores de Tempo , Remodelação Ventricular/efeitos dos fármacos
20.
Clin Sci (Lond) ; 131(10): 897-915, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473471

RESUMO

Diabetes increases the risk of heart failure approximately 2.5-fold, independent of coronary artery disease and other comorbidities. This process, termed diabetic cardiomyopathy, is characterized by initial impairment of left ventricular (LV) relaxation followed by LV contractile dysfunction. Post-mortem examination reveals that human diastolic dysfunction is closely associated with LV damage, including cardiomyocyte hypertrophy, apoptosis and fibrosis, with impaired coronary microvascular perfusion. The pathophysiological mechanisms underpinning the characteristic features of diabetic cardiomyopathy remain poorly understood, although multiple factors including altered lipid metabolism, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum (ER) stress, inflammation, as well as epigenetic changes, are implicated. Despite a recent rise in research interrogating these mechanisms and an increased understanding of the clinical importance of diabetic cardiomyopathy, there remains a lack of specific treatment strategies. How the chronic metabolic disturbances observed in diabetes lead to structural and functional changes remains a pertinent question, and it is hoped that recent advances, particularly in the area of epigenetics, among others, may provide some answers. This review hence explores the temporal onset of the pathological features of diabetic cardiomyopathy, and their relative contribution to the resultant disease phenotype, as well as both current and potential therapeutic options. The emergence of glucose-optimizing agents, namely glucagon-like peptide-1 (GLP-1) agonists and sodium/glucose co-transporter (SGLT)2 inhibitors that confer benefits on cardiovascular outcomes, together with novel experimental approaches, highlight a new and exciting era in diabetes research, which is likely to result in major clinical impact.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/terapia , Animais , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA