Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(19): e109720, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35938192

RESUMO

Dynamic regulation of phosphorylation and dephosphorylation of histones is essential for eukaryotic transcription, but the enzymes engaged in histone dephosphorylation are not fully explored. Here, we show that the tyrosine phosphatase SHP-1 dephosphorylates histone H2B and plays a critical role during transition from the initiation to the elongation stage of transcription. Nuclear-localized SHP-1 is associated with the Paf1 complex at chromatin and dephosphorylates H2B at tyrosine 121. Moreover, knockout of SHP-1, or expression of a mutant mimicking constitutive phosphorylation of H2B Y121, leads to a reduction in genome-wide H2B ubiquitination, which subsequently causes defects in RNA polymerase II-dependent transcription. Mechanistically, we demonstrate that Y121 phosphorylation precludes H2B's interaction with the E2 enzyme, indicating that SHP-1-mediated dephosphorylation of this residue may be a prerequisite for efficient H2B ubiquitination. Functionally, we find that SHP-1-mediated H2B dephosphorylation contributes to maintaining basal autophagic flux in cells through the efficient transcription of autophagy and lysosomal genes. Collectively, our study reveals an important modification of histone H2B regulated by SHP-1 that has a role during eukaryotic transcription.


Assuntos
Histonas , RNA Polimerase II , Cromatina , Histonas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Tirosina/metabolismo , Ubiquitinação
2.
EMBO Rep ; 20(10): e46965, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31432583

RESUMO

Serine/threonine phosphatases achieve substrate diversity by forming distinct holoenzyme complexes in cells. Although the PPP family of serine/threonine phosphatase family members such as PP1 and PP2A are well known to assemble and function as holoenzymes, none of the PPM family members were so far shown to act as holoenzymes. Here, we provide evidence that PPM1G, a member of PPM family of serine/threonine phosphatases, forms a distinct holoenzyme complex with the PP2A regulatory subunit B56δ. B56δ promotes the re-localization of PPM1G to the cytoplasm where the phosphatase can access a discrete set of substrates. Further, we unveil α-catenin, a component of adherens junction, as a new substrate for the PPM1G-B56 phosphatase complex in the cytoplasm. B56δ-PPM1G dephosphorylates α-catenin at serine 641, which is necessary for the appropriate assembly of adherens junctions and the prevention of aberrant cell migration. Collectively, we reveal a new holoenzyme with PPM1G-B56δ as integral components, in which the regulatory subunit provides accessibility to distinct substrates for the phosphatase by defining its cellular localization.


Assuntos
Junções Aderentes/metabolismo , Holoenzimas/metabolismo , Proteína Fosfatase 2C/metabolismo , Proteína Fosfatase 2/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Especificidade por Substrato , alfa Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA