Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 196, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373902

RESUMO

Lumpy skin disease virus (LSDV) belongs to the genus Capripoxvirus and family Poxviridae. LSDV was endemic in most of Africa, the Middle East and Turkey, but since 2015, several outbreaks have been reported in other countries. In this study, we used whole genome sequencing approach to investigate the origin of the outbreak and understand the genomic landscape of the virus. Our study showed that the LSDV strain of 2022 outbreak exhibited many genetic variations compared to the Reference Neethling strain sequence and the previous field strains. A total of 1819 variations were found in 22 genome sequences, which includes 399 extragenic mutations, 153 insertion frameshift mutations, 234 deletion frameshift mutations, 271 Single nucleotide polymorphisms (SNPs) and 762 silent SNPs. Thirty-eight genes have more than 2 variations per gene, and these genes belong to viral-core proteins, viral binding proteins, replication, and RNA polymerase proteins. We highlight the importance of several SNPs in various genes, which may play an essential role in the pathogenesis of LSDV. Phylogenetic analysis performed on all whole genome sequences of LSDV showed two types of variants in India. One group of the variant with fewer mutations was found to lie closer to the LSDV 2019 strain from Ranchi while the other group clustered with previous Russian outbreaks from 2015. Our study highlights the importance of genomic characterization of viral outbreaks to not only monitor the frequency of mutations but also address its role in pathogenesis of LSDV as the outbreak continues.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/genética , Filogenia , Genômica , Surtos de Doenças
2.
Microbiol Res ; 281: 127605, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232495

RESUMO

Spermidine is a poly-cationic molecule belonging to the family of polyamines and is ubiquitously present in all organisms. Salmonella synthesizes, and harbours specialized transporters to import spermidine. A group of polyamines have been shown to assist in Salmonella Typhimurium's virulence and regulation of Salmonella pathogenicity Inslad 1 (SPI-1) genes and stress resistance; however, the mechanism remains elusive. The virulence trait of Salmonella depends on its ability to employ multiple surface structures to attach and adhere to the surface of the target cells before invasion and colonization of the host niche. Our study discovers the mechanism by which spermidine assists in the early stages of Salmonella pathogenesis. For the first time, we report that Salmonella Typhimurium regulates spermidine transport and biosynthesis processes in a mutually inclusive manner. Using a mouse model, we show that spermidine is critical for invasion into the murine Peyer's patches, which further validated our in vitro cell line observation. We show that spermidine controls the mRNA expression of fimbrial (fimA) and non-fimbrial adhesins (siiE, pagN) in Salmonella and thereby assists in attachment to host cell surfaces. Spermidine also regulated the motility through the expression of flagellin genes by enhancing the translation of sigma-28, which features an unusual start codon and a poor Shine-Dalgarno sequence. Besides regulating the formation of the adhesive structures, spermidine tunes the expression of the two-component system BarA/SirA to regulate SPI-1 encoded genes. Thus, our study unravels a novel regulatory mechanism by which spermidine exerts critical functions during Salmonella Typhimurium pathogenesis.


Assuntos
Salmonella typhimurium , Espermidina , Animais , Camundongos , Salmonella typhimurium/metabolismo , Espermidina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelina/genética , Poliaminas/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
J Mol Biol ; 436(4): 168440, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218367

RESUMO

Giardia lambliacauses giardiasis, one of the most common human infectious diseases globally. Previous studies from our lab have shown that hsp90 gene ofGiardia is split into two halves, namely hspN and hspC. The independent pre-mRNAs of these split genes join by trans-splicing, producing a full-length Hsp90 (FlHsp90) mRNA. Genetic manipulation of the participating genes is necessary to understand the mechanism and significance of such trans-splicing based expression of Hsp90. In this study, we have performed transfection based exogenous expression of hspN and/or hspC in G. lamblia. We electroporated a plasmid containing the Avi-tagged hspN component of Hsp90 and examined its fate in G. lamblia. We show that the exogenously expressed hspN RNA gets trans-spliced to endogenously expressed hspC RNA, giving rise to a hybrid-FlHsp90. We highlight the importance of cis-elements in this trans-splicing reaction through mutational analysis. The episomal plasmid carrying deletions in the intronic region of hspN, showed inhibition of the trans-splicing reaction.Additionally, exogenous hspC RNA also followed the same fate as of exogenous hspN, while upon co-transfection with episomal hspN, they underwent trans-splicing with each other. Using eGFP as a test protein, we have shown that intronic sequences of hsp90 gene can guide trans-splicing mediated repair of any associated exonic sequences. Our study provides in vivo validation of Hsp90 trans-splicing, showing crucial role of cis-elements and importantly highlights the potential of hsp90 intronic sequences to function as a minimal splicing tool.


Assuntos
Giardia lamblia , Proteínas de Choque Térmico HSP90 , Proteínas de Protozoários , Trans-Splicing , Giardia lamblia/genética , Íntrons/genética , Precursores de RNA/genética , Trans-Splicing/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA