Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38929145

RESUMO

α-lipoic acid is a naturally occurring compound with potent antioxidant properties that helps protect cells and tissues from oxidative stress. Its incorporation into nanoplatforms can affect factors like bioavailability, stability, reactivity, and targeted delivery. Nanoformulations of α-lipoic acid can significantly enhance its solubility and absorption, making it more bioavailable. While α-lipoic acid can be prone to degradation in its free form, encapsulation within nanoparticles ensures its stability over time, and its release in a controlled and sustained manner to the targeted tissues and cells. In addition, α-lipoic acid can be combined with other compounds, such as other antioxidants, drugs, or nanomaterials, to create synergistic effects that enhance their overall therapeutic benefits or hinder their potential cytotoxicity. This review outlines the advantages and drawbacks associated with the use of α-lipoic acid, as well as various nanotechnological approaches employed to enhance its therapeutic effectiveness, whether alone or in combination with other bioactive agents. Furthermore, it describes the engineering of α-lipoic acid to produce poly(α-lipoic acid) nanoparticles, which hold promise as an effective drug delivery system.

2.
Nanomedicine ; 45: 102593, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907619

RESUMO

Pluronic-coated polylipoic acid-based nanoparticles (F127@PLA-NPs) have great potential as biodegradable nanovectors for delivering active molecules to different organs in complex diseases. In this study we describe the in vivo biodistribution, safety and ability to deliver molecules of F127@PLA-NPs in healthy rats following intravenous administration. Adult rats were injected with 10 mg/kg of rhodamine B-labeled F127@PLA-NPs, and NPs fluorescence and MFI rate were measured by confocal microscopy in whole collected organs. The NPs accumulation rate was maximal in the heart, compared to the other organs. At the cellular level, myocytes and kidney tubular cells showed the highest NPs uptake. Neither histopathological lesion nor thrombogenicity were observed after NPs injection. Finally, F127@PLA-NPs were tested in vitro as miRNAs delivery nanosystem, and they showed good ability in targeting cardiomyocytes. These results demonstrated that our F127@PLA-NPs constitute a biological, minimally invasive and safe delivery tool targeting organs and cells, such as heart and kidney.


Assuntos
MicroRNAs , Nanopartículas , Ácido Tióctico , Animais , Portadores de Fármacos , Poloxâmero , Poliésteres , Polietilenos , Polipropilenos , Ratos , Distribuição Tecidual
3.
Antioxidants (Basel) ; 11(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35624771

RESUMO

The control of radical damage and oxidative stress, phenomena involved in a large number of human pathologies, is a major pharmaceutical and medical goal. We here show that two biocompatible formulations of Pluronic-stabilized, poly (lipoic acid)-based nanoparticles (NP) effectively antagonized the formation of radicals and reactive oxygen species (ROS). These NPs, not only intrinsically scavenged radicals in a-cellular DPPH/ABTS assays, but also inhibited the overproduction of ROS induced by tert-Butyl hydroperoxide (t-BHP) in tumor cells (HeLa), human macrophages and neonatal rat ventricular myocytes (NRVMs). NPs were captured by macrophages and cardiomyocytes much more effectively as compared to HeLa cells and non-phagocytic leukocytes, eventually undergoing intracellular disassembly. Notably, NPs decreased the mitochondrial ROS generation induced by simulated Ischemia/Reperfusion Injury (IRI) in isolated cardiomyocytes. NPs also prevented IRI-triggered cardiomyocyte necrosis, mitochondrial dysfunction, and alterations of contraction-related intracellular Ca2+ waves. Hence, NPs appear to be an effective and cardiomyocyte-selective drug to protect against damages induced by post-ischemic reperfusion.

4.
Biomacromolecules ; 22(2): 467-480, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33347750

RESUMO

Herein we present an innovative approach to produce biocompatible, degradable, and stealth polymeric nanoparticles based on poly(lipoic acid), stabilized by a PEG-ended surfactant. Taking advantage of the well-known thiol-induced polymerization of lipoic acid, a universal and nontoxic nanovector consisted of a solid cross-linked polymeric matrix of lipoic acid monomers was prepared and loaded with active species with a one-step protocol. The biological studies demonstrated a high stability in biological media, the virtual absence of "protein" corona in biological fluids, the absence of acute toxicity in vitro and in vivo, complete clearance from the organism, and a relevant preference for short-term accumulation in the heart. All these features make these nanoparticles candidates as a promising tool for nanomedicine.


Assuntos
Nanopartículas , Coroa de Proteína , Ácido Tióctico , Nanomedicina , Polietilenoglicóis , Polímeros
5.
Front Immunol ; 11: 567365, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154748

RESUMO

Understanding the effects mediated by a set of nanoparticle (NP)-bound host biomolecules, often indicated with the umbrella term of NP corona, is essential in nanomedicine, nanopharmacology, and nanotoxicology. Among the NP-adsorbed proteome, some factors mediate cell binding, endocytosis, and clearing by macrophages and other phagocytes (opsonins), while some others display few affinities for the cell surface (dysopsonins). The functional mapping of opsonins and dysopsonins is instrumental to design long-circulating and nanotoxicologically safe next-generation nanotheranostics. In this review, we critically analyze functional data identifying specific proteins with opsonin or dysopsonin properties. Special attention is dedicated to the following: (1) the simplicity or complexity of the NP proteome and its modulation, (2) the role of specific host proteins in mediating the stealth properties of uncoated or polymer-coated NPs, and (3) the ability of the innate immune system, and, in particular, of the complement proteins, to mediate NP clearance by phagocytes. Emerging species-specific peculiarities, differentiating humans from preclinical animal models (the murine especially), are highlighted throughout this overview. The operative definition of opsonin and dysopsonin and the measurement schemes to assess their in vitro efficacy is critically re-examined. This provides a shared and unbiased approach useful for NP opsonin and dysopsonin systematic identification.


Assuntos
Nanopartículas , Proteínas Opsonizantes/imunologia , Nanomedicina Teranóstica , Animais , Proteínas de Transporte , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Guias como Assunto , Humanos , Imunomodulação , Macrófagos/imunologia , Macrófagos/metabolismo , Nanopartículas/química , Proteínas Opsonizantes/administração & dosagem , Proteínas Opsonizantes/química , Fagócitos/imunologia , Fagócitos/metabolismo , Ligação Proteica , Proteoma , Nanomedicina Teranóstica/métodos
6.
Int J Pharm ; 566: 541-548, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31173801

RESUMO

The effect of mild hyperthermia (MHT) on nanoparticle (NP) accumulation in rat model liver metastasis and the contribution of neoplastic and non-neoplastic cells were characterized. CdSe/ZnS QD-doped poly(lactic-co-glycolic acid) (PLGA) NPs (155 ±â€¯10 nm) were delivered via the ileocolic vein to metastatic livers 15 min after localized MW irradiation (1 min, 41 °C) or in normothermia (37 °C, NT). Quantitative analysis of tissue sections by confocal fluorescence microscopy 1 h after NP injection showed no NP tumor accumulation in NT. On the contrary, MHT increased NP association with tumor, compared to normal tissue. Counterstaining of specific markers showed that the MHT effect is due to an increased NP endocytosis not only by tumor cells, but also by hepatocytes at the growing tumor edge and, to a minor extent, by tumor-associated macrophages. High-NP capturing hepatocytes, close to the tumor, may be a relevant phenomenon in MHT-induced increased targeting of NPs to liver metastasis, influencing their therapeutic efficacy.


Assuntos
Portadores de Fármacos/administração & dosagem , Hepatócitos/metabolismo , Hipertermia Induzida , Neoplasias Hepáticas/metabolismo , Nanopartículas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Animais , Compostos de Cádmio/administração & dosagem , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células de Kupffer/metabolismo , Neoplasias Hepáticas/secundário , Macrófagos/metabolismo , Masculino , Ratos , Compostos de Selênio/administração & dosagem , Sulfetos/administração & dosagem , Compostos de Zinco/administração & dosagem
7.
Front Chem ; 7: 168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984740

RESUMO

Fluorescence is a powerful tool for mapping biological events in real-time with high spatial resolution. Ultra-bright probes are needed in order to achieve high sensitivity: these probes are typically obtained by gathering a huge number of fluorophores in a single nanoparticle (NP). Unfortunately this assembly produces quenching of the fluorescence because of short-range intermolecular interactions. Here we demonstrate that rational structural modification of a well-known molecular fluorophore N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD) produces fluorophores that self-assemble in nanoparticles in the biocompatible environment without any dramatic decrease of the fluorescence quantum yield. Most importantly, the resulting NP show, in an aqueous environment, a brightness which is more than six orders of magnitude higher than the molecular component in the organic solvent. Moreover, the NP are prepared by nanoprecipitation and they are stabilized only via non-covalent interaction, they are surprisingly stable and can be observed as individual bright spots freely diffusing in solution at a concentration as low as 1 nM. The suitability of the NP as biocompatible fluorescent probes was demonstrated in the case of HeLa cells by fluorescence confocal microscopy and MTS assays.

8.
Int J Cardiol ; 275: 136-144, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30509369

RESUMO

INTRODUCTION: We investigated the effects of human amniotic fluid stem cells (hAFS) and rat adipose tissue stromal vascular fraction GFP-positive cells (rSVC-GFP) in a model of cardio-renal syndrome type II (CRSII). METHODS AND RESULTS: RHF was induced by monocrotaline (MCT) in 28 Sprague-Dawley rats. Three weeks later, four million hAFS or rSVC-GFP cells were injected via tail vein. BNP, sCreatinine, kidney and heart NGAL and MMP9, sCytokines, kidney and heart apoptosis and cells (Cs) engraftment were evaluated. Cell-treated rats showed a significant reduction of serum NGAL and Creatinine compared to CRSII. In both hAFS and rSVC-GFP group, kidney protein expression of NGAL was significantly lower than in CRSII (hAFS p = 0.036 and rSVC-GFP p < 0.0001) and similar to that of controls. In both hAFS and rSVC-GFP treated rats, we observed cell engraftment in the medulla and differentiation into tubular, endothelial and SMCs cells. Apoptosis was significantly decreased in cell-treated rats (hAFS 14.07 ±â€¯1.38 and rSVC-GFP 12.67 ±â€¯2.96 cells/mm2) and similar to controls (9.85 ±â€¯2.1 cell/mm2). TUNEL-positive cells were mainly located in the kidney medulla. Pro-inflammatory cytokines were down regulated in cell-treated groups and similar to controls. In cell-treated rats, kidney and heart tissue NGAL was not complexed with MMP9 as in CRSII group, suggesting inhibition of MMPs activity. CONCLUSION: Cell therapy produced improvement in kidney function in rats with CRSII. This was the result of interstitial, vessel and tubular cell engraftment leading to tubular and vessel regeneration, decreased tubular cells apoptosis and mitigated pro-inflammatory milieu. Reduction of NGLA-MMP9 complexes mainly due to decrease MMPs activity prevented further negative heart remodeling.


Assuntos
Síndrome Cardiorrenal/terapia , Rim/patologia , Miocárdio/patologia , Transplante de Células-Tronco/métodos , Remodelação Ventricular/fisiologia , Animais , Apoptose , Síndrome Cardiorrenal/patologia , Síndrome Cardiorrenal/fisiopatologia , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Rim/metabolismo , Masculino , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Data Brief ; 21: 1430-1434, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456267

RESUMO

The data reported in this article are related to the paper entitle "Stem cells transplantation positively modulates the heart-kidney cross talk in Cardiorenal Syndrome Type II" (Vescovo et al., 2019), which analyzed the impact of stem cells injection in cardiorenal syndrome type II. The dataset contains detailed information on apoptosis and cytokines milieu modification after injection of c-Kit-selected human amniotic fluid stem cells (hAFS) or rats vascular progenitor cells (rSVC-GFP group) in an experimental model of CRSII. The data can be useful for clarifying the paracrine effects exerted by the injected cells.

10.
J Tissue Eng Regen Med ; 12(8): 1891-1906, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29956492

RESUMO

Autologous platelet-rich hemocomponents have emerged as potential biologic tools for regenerative purpose, but their therapeutic efficacy still remains controversial. This work represents the characterization study of an innovative autologous leukocyte-fibrin-platelet membrane (LFPm), which we prepared according to a novel protocol involving multiple cycles of apheresis. The high content in fibrinogen gave to our hemocomponent the appearance of a manipulable and suturable membrane with high elasticity and deformation capacity. Moreover, being highly enriched with platelets, leukocytes, and monocytes/macrophages, the LFPm sustained the local release of bioactive molecules (platelet derived growth factor, vascular endothelial growth factor, interleukin-10, and tumour necrosis factor alpha). In parallel, the evaluation of stemness potential highlighted also that the LFPm contained cells expressing pluripotency and multipotency markers both at the messenger ribonucleic acid (NANOG, SOX2, THY1, NT5E, and ENG) and surface-protein level (CD44high /CD73+ /CD34+ /CD117+ /CD31+ ). Finally, biodegradation analysis interestingly showed a good stability of the membrane for at least 3 weeks in vitro and 1 week in vivo. In both cases, biodegradation was associated with progressive exposure of fibrin scaffold, loss/migration of cellular elements, and release of growth factors. Overall, collected evidence could shed some light on the regenerative effect that LFPms may exert after the autologous implant on a defect site.


Assuntos
Plaquetas/química , Sistemas de Liberação de Medicamentos , Fibrina/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Leucócitos/química , Adulto , Animais , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacocinética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Membranas Artificiais , Pessoa de Meia-Idade , Ratos , Ratos Nus
11.
ACS Nano ; 12(6): 5834-5847, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29750504

RESUMO

Poly(2-methyl-2-oxazoline) (PMOXA) is an alternative promising polymer to poly(ethylene glycol) (PEG) for design and engineering of macrophage-evading nanoparticles (NPs). Although PMOXA-engineered NPs have shown comparable pharmacokinetics and in vivo performance to PEGylated stealth NPs in the murine model, its interaction with elements of the human innate immune system has not been studied. From a translational angle, we studied the interaction of fully characterized PMOXA-coated vinyltriethoxysilane-derived organically modified silica NPs (PMOXA-coated NPs) of approximately 100 nm in diameter with human complement system, blood leukocytes, and macrophages and compared their performance with PEGylated and uncoated NP counterparts. Through detailed immunological and proteomic profiling, we show that PMOXA-coated NPs extensively trigger complement activation in human sera exclusively through the classical pathway. Complement activation is initiated by the sensing molecule C1q, where C1q binds with high affinity ( Kd = 11 ± 1 nM) to NP surfaces independent of immunoglobulin binding. C1q-mediated complement activation accelerates PMOXA opsonization with the third complement protein (C3) through the amplification loop of the alternative pathway. This promoted NP recognition by human blood leukocytes and monocyte-derived macrophages. The macrophage capture of PMOXA-coated NPs correlates with sera donor variability in complement activation and opsonization but not with other major corona proteins, including clusterin and a wide range of apolipoproteins. In contrast to these observations, PMOXA-coated NPs poorly activated the murine complement system and were marginally recognized by mouse macrophages. These studies provide important insights into compatibility of engineered NPs with elements of the human innate immune system for translational steps.


Assuntos
Ativação do Complemento , Complemento C1q/imunologia , Complemento C3/imunologia , Nanopartículas/metabolismo , Opsinas/imunologia , Fagócitos/imunologia , Poliaminas/metabolismo , Dióxido de Silício/imunologia , Animais , Complemento C1q/química , Complemento C3/química , Feminino , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Opsinas/química , Fagócitos/química , Poliaminas/química , Poliaminas/imunologia , Dióxido de Silício/química
12.
Clin Vaccine Immunol ; 24(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28835358

RESUMO

Dendritic cells (DCs) regulate the host-microbe balance in the gut and skin, tissues likely exposed to nanoparticles (NPs) present in drugs, food, and cosmetics. We analyzed the viability and the activation of DCs incubated with extracellular media (EMs) obtained from cultures of commensal bacteria (Escherichia coli, Staphylococcus epidermidis) or pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus) in the presence of amorphous silica nanoparticles (SiO2 NPs). EMs and NPs synergistically increased the levels of cytotoxicity and cytokine production, with different nanoparticle dose-response characteristics being found, depending on the bacterial species. E. coli and S. epidermidis EMs plus NPs at nontoxic doses stimulated the secretion of interleukin-1ß (IL-1ß), IL-12, IL-10, and IL-6, while E. coli and S. epidermidis EMs plus NPs at toxic doses stimulated the secretion of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-4, and IL-5. On the contrary, S. aureus and P. aeruginosa EMs induced cytokines only when they were combined with NPs at toxic concentrations. The induction of maturation markers (CD86, CD80, CD83, intercellular adhesion molecule 1, and major histocompatibility complex class II) by commensal bacteria but not by pathogenic ones was improved in the presence of noncytotoxic SiO2 NP doses. DCs consistently supported the proliferation and differentiation of CD4+ and CD8+ T cells secreting IFN-γ and IL-17A. The synergistic induction of CD86 was due to nonprotein molecules present in the EMs from all bacteria tested. At variance with this finding, the synergistic induction of IL-1ß was prevalently mediated by proteins in the case of E. coli EMs and by nonproteins in the case of S. epidermidis EMs. A bacterial costimulus did not act on DCs after adsorption on SiO2 NPs but rather acted as an independent agonist. The inflammatory and immune actions of DCs stimulated by commensal bacterial agonists might be altered by the simultaneous exposure to engineered or environmental NPs.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Nanopartículas/efeitos adversos , Dióxido de Silício/efeitos adversos , Simbiose , Antígenos CD/genética , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/química , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-4/biossíntese , Interleucina-4/imunologia , Nanopartículas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Dióxido de Silício/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia
13.
ChemMedChem ; 12(4): 337-345, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28067470

RESUMO

Some hybrid foldamers of various length, all containing the (4R,5S)-4-carboxy-5-methyloxazolidin-2-one (d-Oxd) moiety alternating with an l-amino acid (l-Val, l-Lys, or l-Ala), were prepared in order to study their preferred conformations and to evaluate their biological activity. Surprisingly, only the longer oligomers containing l-Ala fold into well-established helices, whereas all the other oligomers give partially unfolded turn structures. Nevertheless, they all show good biocompatibility, with no detrimental effects up to 64 µm. After equipping some selected foldamers with the fluorescent tag rhodamine B, a quantitative analysis was performed by dose- and time-response fluorescence-activated cell sorting (FACS) assays with human HeLa cells and primary blood lymphocytes, granulocytes, and monocytes. Among the cell types analyzed, the oligomers associated with monocytes and granulocytes with greatest efficacy, still visible after 24 h incubation. This effect is even more pronounced for foldamers that are able to form stable helices.


Assuntos
Materiais Biocompatíveis/farmacologia , Granulócitos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Peptoides/farmacologia , Aminoácidos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dicroísmo Circular , Cristalografia por Raios X , Granulócitos/citologia , Granulócitos/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Conformação Molecular , Monócitos/citologia , Monócitos/metabolismo , Peptoides/síntese química , Peptoides/química
14.
Data Brief ; 6: 359-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26862583

RESUMO

Peptaibiotics are a group of membrane active peptides of fungal origin. They typically contain α-aminoisobutyric acid (Aib; 1-letter code, U) and other non-coded residues (Toniolo and Brückner, 2009; Neumann et al., 2015; Benedett et al., 1982) [1], [2], [3] stabilizing their helical structure. Peptaibols are peptaibiotics carrying a 1, 2-aminoalcohol at the C-terminus. When a fatty acid chain (of 8-10 carbon atoms) is present at their N-terminus, they are called lipopeptaibols (Toniolo et al., 2001; Degenkolb et al., 2003) [4], [5]. We found (Tavano et al., 2015) [6] that the lipopeptaibol trichogin displays no antibacterial effects up to 64 µM, against both Gram(-) and Gram(+) bacteria, but kills tumor and healthy human cells via a mechanism requiring both the C-terminal primary alcohol group and the N-terminal n-octanoyl moiety, with EC50s around 4-5 µM. However, the substitution of single Gly residues with Lys strongly improves anti-Gram(+) activity (Tavano et al., 2015; De Zotti, Biondi, Park et al., 2012; De Zotti, Biondi, Peggion et al., 2012) [6], [7], [8]. To further characterize the activity of trichogin analogs as antibiotics and cytotoxic agents, we here manipulated the peptide helix amphipathicity by means of two different substitutions: (i) Aib to Leu (De Zotti et al., 2012) [7] or (ii) multiple Gly to Lys changes (Tavano et al., 2015; De Zotti, Biondi, Park et al., 2012; De Zotti, Biondi, Peggion, Formaggio et al., 2012; De Zotti, Biondi, Peggion, De Poli et al., 2012) [6], [7], [8], [9]. The antibacterial activity against four commensal or opportunistic bacterial species and the cytotoxicity against a panel of 9 healthy and tumor-derived eukaryotic cell types (including erythrocytes) are reported as MIC and EC50 (MTS - [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)]-2H-tetrazolium- reduction and LDH - lactate dehydrogenase - release assay).

15.
Artigo em Inglês | MEDLINE | ID: mdl-29942377

RESUMO

We tested whether amorphous SiO2-NPs and formylpeptide receptor (FPRs) agonists synergistically activate human monocytes and neutrophil polymorphonuclear granulocytes (PMNs). Peptide ligands specifically binding to FPR1 (f-MLP) and to FPR2 (MMK-1, WKYMVM and WKYMVm) human isoforms did not modify the association of SiO2-NPs to both cell types or their cytotoxic effects. Similarly, the extent of CD80, CD86, CD83, ICAM-1 and MHCII expression in monocytes treated with SiO2-NPs was not significantly altered by any FPRs agonist. However, FPR1 stimulation with f-MLP strongly increased the secretion of IL-1ß, IL-6 and IL-8 by human monocytes, and of IL-8 by PMNs in the presence of SiO2-NPs, due to the synergic stimulation of gene transcription. FPR2 agonists also up-modulated the production of IL-1ß induced by monocytes treated with SiO2-NPs. In turn, SiO2-NPs increased the chemotaxis of PMNs toward FPR1-specific ligands, but not toward FPR2-specific ones. Conversely, the chemotaxis of monocytes toward FPR2-specific peptides was inhibited by SiO2-NPs. NADPH-oxidase activation triggered by FPR1- and FPR2-specific ligands in both cell types was not altered by SiO2-NPs. Microbial and tissue danger signals sensed by FPRs selectively amplified the functional responses of monocytes and PMNS to SiO2-NPs, and should be carefully considered in the assessment of the risk associated with nanoparticle exposure.

16.
Nanoscale ; 7(42): 17710-28, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26451907

RESUMO

A coat of strongly-bound host proteins, or hard corona, may influence the biological and pharmacological features of nanotheranostics by altering their cell-interaction selectivity and macrophage clearance. With the goal of identifying specific corona-effectors, we investigated how the capture of amorphous silica nanoparticles (SiO2-NPs; Ø = 26 nm; zeta potential = -18.3 mV) by human lymphocytes, monocytes and macrophages is modulated by the prominent proteins of their plasma corona. LC MS/MS analysis, western blotting and quantitative SDS-PAGE densitometry show that Histidine Rich Glycoprotein (HRG) is the most abundant component of the SiO2-NP hard corona in excess plasma from humans (HP) and mice (MP), together with minor amounts of the homologous Kininogen-1 (Kin-1), while it is remarkably absent in their Foetal Calf Serum (FCS)-derived corona. HRG binds with high affinity to SiO2-NPs (HRG Kd ∼2 nM) and competes with other plasma proteins for the NP surface, so forming a stable and quite homogeneous corona inhibiting nanoparticles binding to the macrophage membrane and their subsequent uptake. Conversely, in the case of lymphocytes and monocytes not only HRG but also several common plasma proteins can interchange in this inhibitory activity. The depletion of HRG and Kin-1 from HP or their plasma exhaustion by increasing NP concentration (>40 µg ml(-1) in 10% HP) lead to a heterogeneous hard corona, mostly formed by fibrinogen (Fibr), HDLs, LDLs, IgGs, Kallikrein and several minor components, allowing nanoparticle binding to macrophages. Consistently, the FCS-derived SiO2-NP hard corona, mainly formed by hemoglobin, α2 macroglobulin and HDLs but lacking HRG, permits nanoparticle uptake by macrophages. Moreover, purified HRG competes with FCS proteins for the NP surface, inhibiting their recruitment in the corona and blocking NP macrophage capture. HRG, the main component of the plasma-derived SiO2-NPs' hard corona, has antiopsonin characteristics and uniquely confers to these particles the ability to evade macrophage capture.


Assuntos
Macrófagos/metabolismo , Nanopartículas/química , Proteínas/química , Dióxido de Silício/química , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Fluoresceína-5-Isotiocianato/química , Humanos , Cininogênios/química , Cininogênios/metabolismo , Macrófagos/citologia , Camundongos , Proteínas/metabolismo , Espectrometria de Massas em Tandem
17.
Biochim Biophys Acta ; 1848(1 Pt A): 134-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25306964

RESUMO

Peptaibiotics, non-ribosomally synthetized peptides from various ascomycetes, are uniquely characterized by dialkylated a-amino acids, a rigid heli cal conformation, and membrane permeation properties. Although generally considered as antimicrobial peptides, peptaibiotics may display other toxicological properties, and their function is in many cases unknown. With the goal to define the biological activity and selectivity of the peptaibiotictrichogin GA IV from the human opportunist Trichodenna longibrachiatum we analyzed its membrane interaction,cytotoxic activity and antibacterial effect. Trichogin GA IV effectively killed several types of healthy and neoplastic human cells at doses (EC 50%= 4-6 ~) lacking antibiotic effects on both Gram- and Gram+ bacteria(MIC > 64 ~ ). The peptaibiotic distinctive (-terminal primary alcohol was found to cooperate with theN-terminal n-octanoyl group to permeate the membrane phospholipid bilayer and to mediate effective binding and active endocytosis of trichogin GA IV in eukaryotic cells, two steps essential for cell death induction.Replacement of one Gly with Lys plus the simultaneous esterification of the (-terminus, strongly increased trichogin GA IV anti-Gram+ activity (MIC 1-4 ~ ). but further mitigated its cytotoxicity on human cells.


Assuntos
Membrana Celular/química , Lipopeptídeos/química , Lipídeos de Membrana/química , Lipossomas Unilamelares/química , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Ligação Competitiva , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Endocitose , Células HL-60 , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Lipídeos de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Microscopia Confocal , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Lipossomas Unilamelares/metabolismo
18.
Nanomedicine (Lond) ; 9(16): 2481-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24661258

RESUMO

AIM: We investigated monocyte and macrophage death and cytokine production induced by amorphous silica nanoparticles (SiO2-NPs) to clarify the role of defined serum corona proteins. MATERIALS & METHODS: The cytotoxic proinflammatory effects of SiO2-NPs on human monocytes and macrophages were characterized in no serum, in fetal calf serum and in the presence of purified corona proteins. RESULTS: In no serum and in fetal calf serum above approximately 75 µg/ml, SiO2-NPs lysed monocytes and macrophages by plasma membrane damage (necrosis). In fetal calf serum below approximately 75 µg/ml, SiO2-NPs triggered an endolysosomal acidification and caspase-1-dependent monocyte death (pyroptosis). The corona high-density lipoproteins:albumin ratio accounted for the features of the SiO2-NPs in serum. DISCUSSION: Corona high-density lipoproteins are a major determinant of the differential cytotoxic action of SiO2-NPs on monocytes and macrophages.


Assuntos
Albuminas/efeitos dos fármacos , Proteínas Sanguíneas/efeitos dos fármacos , Lipoproteínas HDL/efeitos dos fármacos , Dióxido de Silício/farmacologia , Albuminas/metabolismo , Animais , Bovinos , Morte Celular , Humanos , Lipoproteínas HDL/sangue , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nanopartículas/química , Dióxido de Silício/química
19.
Nanoscale ; 5(13): 6106-16, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23728482

RESUMO

PEGylated and non-PEGylated ORMOSIL nanoparticles prepared by microemulsion condensation of vinyltriethoxy-silane (VTES) were investigated in detail for their micro-structure and ability to deliver photoactive agents. With respect to pure silica nanoparticles, organic modification substantially changes the microstructure and the surface properties. This in turn leads to a modulation of both the photophysical properties of embedded photosensitizers and the interaction of the nanoparticles with biological entities such as serum proteins. The flexibility of the synthetic procedure allows the rapid preparation and screening of multifunctional nanosystems for photodynamic therapy (PDT). Selective targeting of model cancer cells was tested by using folate, an integrin specific RGD peptide and anti-EGFR antibodies. Data suggest the interference of the stealth-conferring layer (PEG) with small targeting agents, but not with bulky antibodies. Moreover, we showed that selective photokilling of tumour cells may be limited even in the case of efficient targeting because of intrinsic transport limitations of active cellular uptake mechanisms or suboptimum localization.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Siloxanas , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Siloxanas/química , Siloxanas/farmacologia
20.
Int J Cardiol ; 168(3): 2014-21, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23453873

RESUMO

BACKGROUND: The aim of our study was to investigate whether stem cell (SC) therapy with human amniotic fluid stem cells (hAFS, fetal stem cells) and rat adipose tissue stromal vascular fraction cells-GFP positive cells (rSVC-GFP) was able to produce favorable effects on skeletal muscle (SM) remodeling in a well-established rat model of right heart failure (RHF). METHODS: RHF was induced by monocrotaline (MCT) in Sprague-Dawley rats. Three weeks later, four millions of hAFS or rSVC-GFP cells were injected via tail vein. SM remodeling was assessed by Soleus muscle fiber cross sectional area (CSA), myocyte apoptosis, myosin heavy chain (MHC) composition, satellite cells pattern, and SC immunohistochemistry. RESULTS: hAFS and rSVC-GFP injection produced significant SC homing in Soleus (0.68 ± 1.0 and 0.67 ± 0.75% respectively), with a 50% differentiation toward smooth muscle and endothelial cells. Pro-inflammatory cytokines were down regulated to levels similar to those of controls. SC-treated (SCT) rats showed increased CSA (p<0.004 vs MCT) similarly to controls with a reshift toward the slow MHC1 isoform. Apoptosis was significantly decreased (11.12.± 8.8 cells/mm(3) hAFS and 13.1+7.6 rSVC-GFP) (p<0.001 vs MCT) and similar to controls (5.38 ± 3.0 cells/mm(3)). RHF rats showed a dramatic reduction of satellite cells(MCT 0.2 ± 0.06% Pax7 native vs controls 2.60 ± 2.46%, p<0.001), while SCT induced a repopulation of both native and SC derived satellite cells (p<0.005). CONCLUSIONS: SC treatment led to SM remodeling with satellite cell repopulation, decreased atrophy and apoptosis. Modulation of the cytokine milieu might play a crucial pathophysiological role with a possible scenario for autologous transplantation of SC in pts with CHF myopathy.


Assuntos
Insuficiência Cardíaca/cirurgia , Músculo Esquelético/fisiologia , Transplante de Células-Tronco/métodos , Âmnio/citologia , Âmnio/transplante , Animais , Apoptose , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Insuficiência Cardíaca/fisiopatologia , Humanos , Imuno-Histoquímica , Masculino , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA