Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Rep ; 10(1): 17953, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087848

RESUMO

Proteins involved in the spaciotemporal regulation of GLUT4 trafficking represent potential therapeutic targets for the treatment of insulin resistance and type 2 diabetes. A key regulator of insulin- and exercise-stimulated glucose uptake and GLUT4 trafficking is TBC1D1. This study aimed to identify proteins that regulate GLUT4 trafficking and homeostasis via TBC1D1. Using an unbiased quantitative proteomics approach, we identified proteins that interact with TBC1D1 in C2C12 myotubes including VPS13A and VPS13C, the Rab binding proteins EHBP1L1 and MICAL1, and the calcium pump SERCA1. These proteins associate with TBC1D1 via its phosphotyrosine binding (PTB) domains and their interactions with TBC1D1 were unaffected by AMPK activation, distinguishing them from the AMPK regulated interaction between TBC1D1 and AMPKα1 complexes. Depletion of VPS13A or VPS13C caused a post-transcriptional increase in cellular GLUT4 protein and enhanced cell surface GLUT4 levels in response to AMPK activation. The phenomenon was specific to GLUT4 because other recycling proteins were unaffected. Our results provide further support for a role of the TBC1D1 PTB domains as a scaffold for a range of Rab regulators, and also the VPS13 family of proteins which have been previously linked to fasting glycaemic traits and insulin resistance in genome wide association studies.


Assuntos
Proteínas Ativadoras de GTPase/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas/farmacologia , Proteínas de Transporte Vesicular/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2 , Proteínas Ativadoras de GTPase/fisiologia , Células HEK293 , Humanos , Resistência à Insulina , Masculino , Camundongos Transgênicos , Proteínas/fisiologia , Proteínas de Transporte Vesicular/fisiologia
2.
PLoS One ; 14(4): e0214610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969984

RESUMO

Glycogen synthase kinase-3 (GSK3) is over-expressed and hyperactivated in non-small cell lung carcinoma (NSCLC) and plays a role in ensuring the correct alignment of chromosomes on the metaphase plate during mitosis through regulation of microtubule stability. This makes the enzyme an attractive target for cancer therapy. We examined the effects of a selective cell-permeant GSK3 inhibitor (CHIR99021), used alone or in combination with paclitaxel, using an in vitro cell growth assay, a quantitative chromosome alignment assay, and a tumor xenograft model. CHIR99021 inhibits the growth of human H1975 and H1299 NSCLC cell lines in a synergistic manner with paclitaxel. CHIR99021 and paclitaxel promoted a synergistic defect in chromosomal alignment when compared to each compound administered as monotherapy. Furthermore, we corroborated our in vitro findings in a mouse tumor xenograft model. Our results demonstrate that a GSK3 inhibitor and paclitaxel act synergistically to inhibit the growth of NSCLC cells in vitro and in vivo via a mechanism that may involve converging modes of action on microtubule spindle stability and thus chromosomal alignment during metaphase. Our findings provide novel support for the use of the GSK3 inhibitor, CHIR99021, alongside taxol-based chemotherapy in the treatment of human lung cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/uso terapêutico , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Paclitaxel/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo
3.
Biochem J ; 475(18): 2969-2983, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30135087

RESUMO

AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosine-binding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237 Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Mutação de Sentido Incorreto , Obesidade/enzimologia , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animais , Feminino , Proteínas Ativadoras de GTPase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/genética , Fosforilação , Ribonucleotídeos/genética , Ribonucleotídeos/metabolismo , Caracteres Sexuais
4.
Cell Signal ; 28(1): 74-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515129

RESUMO

Rip11 is a Rab11 effector protein that has been shown to be important in controlling the trafficking of several intracellular cargoes, including the fatty acid transporter FAT/CD36, V-ATPase and the glucose transporter GLUT4. We have previously demonstrated that Rip11 translocates to the plasma membrane in response to insulin and here we examine the basis of this regulated phenomenon in more detail. We show that Rip11 rapidly recycles between the cell interior and surface, and that the ability of insulin to increase the appearance of Rip11 at the cell surface involves an inhibition of Rip11 internalisation from the plasma membrane. By contrast the hormone has no effect on the rate of Rip11 translocation towards the plasma membrane. The ability of insulin to inhibit Rip11 internalisation requires dynamin and class I PI3-kinases, but is independent of the activation of the protein kinase Akt; characteristics which are very similar to the mechanism by which insulin inhibits GLUT4 endocytosis.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Insulina/farmacologia , Proteínas Mitocondriais/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rab de Ligação ao GTP
5.
Mol Cell ; 60(2): 195-207, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474064

RESUMO

Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of mitochondrial PEP-carboxykinase (PCK2). Under these conditions, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PCK2 expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo. Elevated PCK2 expression is observed in several human tumor types and enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients. Our results define a role for PCK2 in cancer cell metabolic reprogramming that promotes glucose-independent cell growth and metabolic stress resistance in human tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Gluconeogênese/genética , Neoplasias Pulmonares/metabolismo , Neoplasias/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Adaptação Fisiológica/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclo do Ácido Cítrico/genética , Glucose/deficiência , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metabolômica , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Purinas/biossíntese , Ácido Pirúvico/metabolismo , Serina/biossíntese
6.
PLoS One ; 10(4): e0120084, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25876175

RESUMO

AIMS: Weight-loss after bariatric surgery improves insulin sensitivity, but the underlying molecular mechanism is not clear. To ascertain the effect of bariatric surgery on insulin signalling, we examined glucose disposal and Akt activation in morbidly obese volunteers before and after Roux-en-Y gastric bypass surgery (RYGB), and compared this to lean volunteers. MATERIALS AND METHODS: The hyperinsulinaemic euglycaemic clamp, at five infusion rates, was used to determine glucose disposal rates (GDR) in eight morbidly obese (body mass index, BMI=47.3 ± 2.2 kg/m(2)) patients, before and after RYGB, and in eight lean volunteers (BMI=20.7 ± 0.7 kg/m2). Biopsies of brachioradialis muscle, taken at fasting and insulin concentrations that induced half-maximal (GDR50) and maximal (GDR100) GDR in each subject, were used to examine the phosphorylation of Akt-Thr308, Akt-473, and pras40, in vivo biomarkers for Akt activity. RESULTS: Pre-operatively, insulin-stimulated GDR was lower in the obese compared to the lean individuals (P<0.001). Weight-loss of 29.9 ± 4 kg after surgery significantly improved GDR50 (P=0.004) but not GDR100 (P=0.3). These subjects still remained significantly more insulin resistant than the lean individuals (p<0.001). Weight loss increased insulin-stimulated skeletal muscle Akt-Thr308 and Akt-Ser473 phosphorylation, P=0.02 and P=0.03 respectively (MANCOVA), and Akt activity towards the substrate PRAS40 (P=0.003, MANCOVA), and in contrast to GDR, were fully normalised after the surgery (obese vs lean, P=0.6, P=0.35, P=0.46, respectively). CONCLUSIONS: Our data show that although Akt activity substantially improved after surgery, it did not lead to a full restoration of insulin-stimulated glucose disposal. This suggests that a major defect downstream of, or parallel to, Akt signalling remains after significant weight-loss.


Assuntos
Cirurgia Bariátrica , Glucose/metabolismo , Resistência à Insulina , Insulina/metabolismo , Obesidade Mórbida/cirurgia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Adulto Jovem
7.
PLoS One ; 9(12): e114725, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486534

RESUMO

BACKGROUND: Glycogen synthase kinase 3 (GSK3) is a central regulator of cellular metabolism, development and growth. GSK3 activity was thought to oppose tumourigenesis, yet recent studies indicate that it may support tumour growth in some cancer types including in non-small cell lung carcinoma (NSCLC). We examined the undefined role of GSK3 protein kinase activity in tissue from human NSCLC. METHODS: The expression and protein kinase activity of GSK3 was determined in 29 fresh frozen samples of human NSCLC and patient-matched normal lung tissue by quantitative immunoassay and western blotting for the phosphorylation of three distinct GSK3 substrates in situ (glycogen synthase, RelA and CRMP-2). The proliferation and sensitivity to the small-molecule GSK3 inhibitor; CHIR99021, of NSCLC cell lines (Hcc193, H1975, PC9 and A549) and non-neoplastic type II pneumocytes was further assessed in adherent culture. RESULTS: Expression and protein kinase activity of GSK3 was elevated in 41% of human NSCLC samples when compared to patient-matched control tissue. Phosphorylation of GSK3α/ß at the inhibitory S21/9 residue was a poor biomarker for activity in tumour samples. The GSK3 inhibitor, CHIR99021 dose-dependently reduced the proliferation of three NSCLC cell lines yet was ineffective against type II pneumocytes. CONCLUSION: NSCLC tumours with elevated GSK3 protein kinase activity may have evolved dependence on the kinase for sustained growth. Our results provide further important rationale for exploring the use of GSK3 inhibitors in treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Apoptose , Western Blotting , Estudos de Casos e Controles , Humanos , Técnicas Imunoenzimáticas , Pulmão/enzimologia , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas
8.
Obesity (Silver Spring) ; 22(10): 2252-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044758

RESUMO

OBJECTIVE: Genome-wide association studies (GWAS) of BMI are mostly undertaken under the assumption that "kg/m(2) " is an index of weight fully adjusted for height, but in general this is not true. The aim here was to assess the contribution of common genetic variation to a adjusted version of that phenotype which appropriately accounts for covariation in height in children. METHODS: A GWAS of height-adjusted BMI (BMI[x] = weight/height(x) ), calculated to be uncorrelated with height, in 5809 participants (mean age 9.9 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC) was performed. RESULTS: GWAS based on BMI[x] yielded marked differences in genomewide results profile. SNPs in ADCY3 (adenylate cyclase 3) were associated at genome-wide significance level (rs11676272 (0.28 kg/m(3.1) change per allele G (0.19, 0.38), P = 6 × 10(-9) ). In contrast, they showed marginal evidence of association with conventional BMI [rs11676272 (0.25 kg/m(2) (0.15, 0.35), P = 6 × 10(-7) )]. Results were replicated in an independent sample, the Generation R study. CONCLUSIONS: Analysis of BMI[x] showed differences to that of conventional BMI. The association signal at ADCY3 appeared to be driven by a missense variant and it was strongly correlated with expression of this gene. Our work highlights the importance of well understood phenotype use (and the danger of convention) in characterising genetic contributions to complex traits.


Assuntos
Adenilil Ciclases/genética , Estatura , Índice de Massa Corporal , Peso Corporal/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Alelos , Estatura/genética , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Fenótipo
9.
Biochem J ; 455(2): 195-206, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23905686

RESUMO

PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animais , Linhagem Celular , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Masculino , Gambás , Fosfatidilinositol 3-Quinase/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ratos , Ratos Wistar
10.
PLoS One ; 8(6): e66963, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826179

RESUMO

Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R) antibody figitumumab in non-small cell lung cancer (NSCLC) patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR) in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R) and IR47-9 (IR), and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Terapia de Alvo Molecular , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Isoxazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
PLoS One ; 8(5): e63897, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667688

RESUMO

Obesity is now a leading cause of preventable death in the industrialised world. Understanding its genetic influences can enhance insight into molecular pathogenesis and potential therapeutic targets. A non-synonymous polymorphism (rs35859249, p.Arg125Trp) in the N-terminal TBC1D1 phosphotyrosine-binding (PTB) domain has shown a replicated association with familial obesity in women. We investigated these findings in the Avon Longitudinal Study of Parents and Children (ALSPAC), a large European birth cohort of mothers and offspring, and by generating a predicted model of the structure of this domain. Structural prediction involved the use of three separate algorithms; Robetta, HHpred/MODELLER and I-TASSER. We used the transmission disequilibrium test (TDT) to investigate familial association in the ALSPAC study cohort (N = 2,292 mother-offspring pairs). Linear regression models were used to examine the association of genotype with mean measurements of adiposity (Body Mass Index (BMI), waist circumference and Dual-energy X-ray absorptiometry (DXA) assessed fat mass), and logistic regression was used to examine the association with odds of obesity. Modelling showed that the R125W mutation occurs in a location of the TBC1D1 PTB domain that is predicted to have a function in a putative protein:protein interaction. We did not detect an association between R125W and BMI (mean per allele difference 0.27 kg/m(2) (95% Confidence Interval: 0.00, 0.53) P = 0.05) or obesity (odds ratio 1.01 (95% Confidence Interval: 0.77, 1.31, P = 0.96) in offspring after adjusting for multiple comparisons. Furthermore, there was no evidence to suggest that there was familial association between R125W and obesity (χ(2) = 0.06, P = 0.80). Our analysis suggests that R125W in TBC1D1 plays a role in the binding of an effector protein, but we find no evidence that the R125W variant is related to mean BMI or odds of obesity in a general population sample.


Assuntos
Substituição de Aminoácidos/genética , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Homologia Estrutural de Proteína , Adiposidade/genética , Índice de Massa Corporal , Criança , Estudos de Coortes , Família , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença , Humanos , Masculino , Modelos Moleculares , Fenótipo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Software
12.
Nat Cell Biol ; 15(5): 461-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563491

RESUMO

The PDZ-domain-containing sorting nexin 27 (SNX27) promotes recycling of internalized transmembrane proteins from endosomes to the plasma membrane by linking PDZ-dependent cargo recognition to retromer-mediated transport. Here, we employed quantitative proteomics of the SNX27 interactome and quantification of the surface proteome of SNX27- and retromer-suppressed cells to dissect the assembly of the SNX27 complex and provide an unbiased global view of SNX27-mediated sorting. Over 100 cell surface proteins, many of which interact with SNX27, including the glucose transporter GLUT1, the Menkes disease copper transporter ATP7A, various zinc and amino acid transporters, and numerous signalling receptors, require SNX27-retromer to prevent lysosomal degradation and maintain surface levels. Furthermore, we establish that direct interaction of the SNX27 PDZ domain with the retromer subunit VPS26 is necessary and sufficient to prevent lysosomal entry of SNX27 cargo. Our data identify the SNX27-retromer as a major endosomal recycling hub required to maintain cellular nutrient homeostasis.


Assuntos
Glucose/metabolismo , Proteômica/métodos , Nexinas de Classificação/análise , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Western Blotting , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Biologia Computacional/métodos , ATPases Transportadoras de Cobre , Meios de Cultura/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Células HeLa , Humanos , Transporte de Íons , Marcação por Isótopo/métodos , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Domínios PDZ , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
J Cell Sci ; 126(Pt 9): 1931-41, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23444368

RESUMO

Insulin enhances the uptake of glucose into adipocytes and muscle cells by promoting the redistribution of the glucose transporter isoform 4 (GLUT4) from intracellular compartments to the cell surface. Rab GTPases regulate the trafficking itinerary of GLUT4 and several have been found on immunopurified GLUT4 vesicles. Specifically, Rab14 has previously been implicated in GLUT4 trafficking in muscle although its role, if any, in adipocytes is poorly understood. Analysis of 3T3-L1 adipocytes using confocal microscopy demonstrated that endogenous GLUT4 and endogenous Rab14 exhibited a partial colocalisation. However, when wild-type Rab14 or a constitutively-active Rab14Q70L mutant were overexpressed in these cells, the colocalisation with both GLUT4 and IRAP became extensive. Interestingly, this colocalisation was restricted to enlarged 'ring-like' vesicular structures (mean diameter 1.3 µm), which were observed in the presence of overexpressed wild-type Rab14 and Rab14Q70L, but not an inactive Rab14S25N mutant. These enlarged vesicles contained markers of early endosomes and were rapidly filled by GLUT4 and transferrin undergoing endocytosis from the plasma membrane. The Rab14Q70L mutant reduced basal and insulin-stimulated cell surface GLUT4 levels, probably by retaining GLUT4 in an insulin-insensitive early endosomal compartment. Furthermore, shRNA-mediated depletion of Rab14 inhibited the transit of GLUT4 through early endosomal compartments towards vesicles and tubules in the perinuclear region. Given the previously reported role of Rab14 in trafficking between endosomes and the Golgi complex, we propose that the primary role of Rab14 in GLUT4 trafficking is to control the transit of internalised GLUT4 from early endosomes into the Golgi complex, rather than direct GLUT4 translocation to the plasma membrane.


Assuntos
Adipócitos/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Complexo de Golgi/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Substituição de Aminoácidos , Animais , Membrana Celular/genética , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endossomos/genética , Transportador de Glucose Tipo 4/genética , Complexo de Golgi/genética , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Camundongos , Mutação de Sentido Incorreto , Transporte Proteico/fisiologia , Proteínas rab de Ligação ao GTP/genética
14.
PLoS One ; 7(3): e33889, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470488

RESUMO

We previously showed that the serum- and glucocorticoid-inducible kinase 3 (SGK3) increases the AMPA-type glutamate receptor GluA1 protein in the plasma membrane. The activation of AMPA receptors by NMDA-type glutamate receptors eventually leads to postsynaptic neuronal plasticity. Here, we show that SGK3 mRNA is upregulated in the hippocampus of new-born wild type Wistar rats after NMDA receptor activation. We further demonstrate in the Xenopus oocyte expression system that delivery of GluA1 protein to the plasma membrane depends on the small GTPase RAB11. This RAB-dependent GluA1 trafficking requires phosphorylation and activation of phosphoinositol-3-phosphate-5-kinase (PIKfyve) and the generation of PI(3,5)P(2). In line with this mechanism we could show PIKfyve mRNA expression in the hippocampus of wild type C57/BL6 mice and phosphorylation of PIKfyve by SGK3. Incubation of hippocampal slices with the PIKfyve inhibitor YM201636 revealed reduced CA1 basal synaptic activity. Furthermore, treatment of primary hippocampal neurons with YM201636 altered the GluA1 expression pattern towards reduced synaptic expression of GluA1. Our findings demonstrate for the first time an involvement of PIKfyve and PI(3,5)P(2) in NMDA receptor-triggered synaptic GluA1 trafficking. This new regulatory pathway of GluA1 may contribute to synaptic plasticity and memory.


Assuntos
Receptores de AMPA/metabolismo , Transdução de Sinais , Aminopiridinas/farmacologia , Animais , Animais Recém-Nascidos , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação para Cima , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
15.
FASEB J ; 26(2): 513-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22002906

RESUMO

Inward rectifier potassium channels of the Kir2 subfamily are important determinants of the electrical activity of brain and muscle cells. Genetic mutations in Kir2.1 associate with Andersen-Tawil syndrome (ATS), a familial disorder leading to stress-triggered periodic paralysis and ventricular arrhythmia. To identify the molecular mechanisms of this stress trigger, we analyze Kir channel function and localization electrophysiologically and by time-resolved confocal microscopy. Furthermore, we employ a mathematical model of muscular membrane potential. We identify a novel corticoid signaling pathway that, when activated by glucocorticoids, leads to enrichment of Kir2 channels in the plasma membranes of mammalian cell lines and isolated cardiac and skeletal muscle cells. We further demonstrate that activation of this pathway can either partly restore (40% of cases) or further impair (20% of cases) the function of mutant ATS channels, depending on the particular Kir2.1 mutation. This means that glucocorticoid treatment might either alleviate or deteriorate symptoms of ATS depending on the patient's individual Kir2.1 genotype. Thus, our findings provide a possible explanation for the contradictory effects of glucocorticoid treatment on symptoms in patients with ATS and may open new pathways for the design of personalized medicines in ATS therapy.


Assuntos
Síndrome de Andersen/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Síndrome de Andersen/tratamento farmacológico , Síndrome de Andersen/genética , Animais , Feminino , Glucocorticoides/uso terapêutico , Cobaias , Células HEK293 , Células HeLa , Humanos , Proteínas Imediatamente Precoces/metabolismo , Técnicas In Vitro , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miócitos Cardíacos/metabolismo , Oócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Estresse Fisiológico , Xenopus laevis
16.
Cell Signal ; 23(10): 1515-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21620960

RESUMO

Akt (also known as protein kinase B or PKB) comprises three closely related isoforms Akt1, Akt2 and Akt3 (or PKBα/ß/γ respectively). We have a very good understanding of the mechanisms by which Akt isoforms are activated by growth factors and other extracellular stimuli as well as by oncogenic mutations in key upstream regulatory proteins including Ras, PI3-kinase subunits and PTEN. There are also an ever increasing number of Akt substrates being identified that play a role in the regulation of the diverse array of biological effects of activated Akt; this includes the regulation of cell proliferation, survival and metabolism. Dysregulation of Akt leads to diseases of major unmet medical need such as cancer, diabetes, cardiovascular and neurological diseases. As a result there has been substantial investment in the development of small molecular Akt inhibitors that act competitively with ATP or phospholipid binding, or allosterically. In this review we will briefly discuss our current understanding of how Akt isoforms are regulated, the substrate proteins they phosphorylate and how this integrates with the role of Akt in disease. We will furthermore discuss the types of Akt inhibitors that have been developed and are in clinical trials for human cancer, as well as speculate on potential on-target toxicities, such as disturbances of heart and vascular function, metabolism, memory and mood, which should be monitored very carefully during clinical trial.


Assuntos
Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/classificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sítios de Ligação , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/metabolismo , Proliferação de Células , Diabetes Mellitus/enzimologia , Diabetes Mellitus/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Estrutura Molecular , Neoplasias/enzimologia , Neoplasias/metabolismo , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/metabolismo , Oxidiazóis/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fatores de Transcrição/metabolismo
17.
Anticancer Res ; 31(5): 1577-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21617212

RESUMO

UNLABELLED: Thioredoxin domain containing protein 5 (TXNDC5) is a member of the thioredoxin (Trx) domain-containing family of proteins that have been implicated in cancer progression. The expression of TXNDC5 in non-small cell lung carcinoma (NSCLC) tumours compared to patient-matched normal lung tissue was determined and cell line models were used to determine if expression was regulated by hypoxia. PATIENTS AND METHODS: Samples of tumour and normal lung tissue were taken during surgery and immediately frozen. The expression of TXNDC5 was determined by Western blotting and immunohistochemistry. To analyse the effect of hypoxia on TXNDC5 expression NSCLC cell lines were used. RESULTS: Tumours from 18/29 (62%) individuals exhibited an increase in TXNDC5 expression compared to normal lung tissue (p<0.05). TXNDC5 expression was not elevated by hypoxia. CONCLUSION: TXNDC5 is up-regulated in the majority of resected human NSCLC. Cell line data indicates that the expression of TXNDC5 in tumour cells is not regulated by hypoxia.


Assuntos
Adenocarcinoma Bronquioloalveolar/metabolismo , Adenocarcinoma/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma Bronquioloalveolar/patologia , Idoso , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Hipóxia , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo
18.
J Biol Chem ; 286(15): 13647-56, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21335550

RESUMO

The Forkhead box transcription factor FoxO1 regulates metabolic gene expression in mammals. FoxO1 activity is tightly controlled by phosphatidylinositol 3-kinase (PI3K) signaling, resulting in its phosphorylation and nuclear exclusion. We sought here to determine the mechanisms involved in glucose and insulin-stimulated nuclear shuttling of FoxO1 in pancreatic ß cells and its consequences for preproinsulin (Ins1, Ins2) gene expression. Nuclear-localized endogenous FoxO1 translocated to the cytosol in response to elevated glucose (3 versus 16.7 mM) in human islet ß cells. Real-time confocal imaging of nucleo-cytosolic shuttling of a FoxO1-EGFP chimera in primary mouse and clonal MIN6 ß cells revealed a time-dependent glucose-responsive nuclear export, also mimicked by exogenous insulin, and blocked by suppressing insulin secretion. Constitutively active PI3K or protein kinase B/Akt exerted similar effects, while inhibitors of PI3K, but not of glycogen synthase kinase-3 or p70 S6 kinase, blocked nuclear export. FoxO1 overexpression reversed the activation by glucose of pancreatic duodenum homeobox-1 (Pdx1) transcription. Silencing of FoxO1 significantly elevated the expression of mouse Ins2, but not Ins1, mRNA at 3 mM glucose. Putative FoxO1 binding sites were identified in the distal promoter of rodent Ins2 genes and direct binding of FoxO1 to the Ins2 promoter was demonstrated by chromatin immunoprecipitation. A 915-bp glucose-responsive Ins2 promoter was inhibited by constitutively active FoxO1, an effect unaltered by simultaneous overexpression of PDX1. We conclude that nuclear import of FoxO1 contributes to the suppression of Pdx1 and Ins2 gene expression at low glucose, the latter via a previously unsuspected and direct physical interaction with the Ins2 promoter.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/biossíntese , Elementos de Resposta/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular , Núcleo Celular/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/genética , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Edulcorantes/metabolismo , Edulcorantes/farmacologia , Transativadores/genética , Transativadores/metabolismo
19.
Cell Metab ; 12(4): 329-340, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20889126

RESUMO

Diabetic nephropathy (DN) is the leading cause of renal failure in the world. It is characterized by albuminuria and abnormal glomerular function and is considered a hyperglycemic "microvascular" complication of diabetes, implying a primary defect in the endothelium. However, we have previously shown that human podocytes have robust responses to insulin. To determine whether insulin signaling in podocytes affects glomerular function in vivo, we generated mice with specific deletion of the insulin receptor from their podocytes. These animals develop significant albuminuria together with histological features that recapitulate DN, but in a normoglycemic environment. Examination of "normal" insulin-responsive podocytes in vivo and in vitro demonstrates that insulin signals through the MAPK and PI3K pathways via the insulin receptor and directly remodels the actin cytoskeleton of this cell. Collectively, this work reveals the critical importance of podocyte insulin sensitivity for kidney function.


Assuntos
Insulina/fisiologia , Rim/fisiologia , Podócitos/fisiologia , Animais , Nefropatias Diabéticas , Glomérulos Renais/citologia , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia
20.
Biochem Biophys Res Commun ; 397(4): 650-5, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20513353

RESUMO

PIKfyve is a protein and lipid kinase that plays an important role in membrane trafficking, including TGN to endosome retrograde sorting and in insulin-stimulated translocation of the GLUT4 glucose transporter from intracellular storage vesicles to the plasma membrane. We have previously demonstrated that PIKfyve is phosphorylated in response to insulin in a PI3-kinase and protein kinase B (PKB)-dependent manner. However, it has been implied that this was not due to direct phosphorylation of PIKfyve by PKB, but as a result of an insulin-induced PIKfyve autophosphorylation event. Here we demonstrate that purified PIKfyve is phosphorylated in vitro by a recombinant active PKB on two separate serine residues, S318 and S105, which flank the N-terminal FYVE domain of the protein. Only S318, however, becomes phosphorylated in intact cells stimulated with insulin. We further demonstrate that S318 is phosphorylated in response to hyperosmotic stress in a PI3-kinase- and PKB-independent manner. Importantly, the effects of insulin and sorbitol were not prevented by the presence of an ATP-competitive PIKfyve inhibitor (YM20163) or in a mutant PIKfyve lacking both lipid and protein kinase activity. Our results confirm, therefore, that PIKfyve is directly phosphorylated by PKB on a single serine residue in response to insulin and are not due to autophosphorylation of the enzyme. We further reveal that two stimuli known to promote glucose uptake in cells, both stimulate phosphorylation of PIKfyve on S318 but via distinct signal transduction pathways.


Assuntos
Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Células CHO , Cricetinae , Cricetulus , Insulina/farmacologia , Camundongos , Pressão Osmótica , Fosfatidilinositol 3-Quinases/genética , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo , Sorbitol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA