Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 11(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239647

RESUMO

Pressure injuries (PIs) are a major public health problem and can be used as quality-of-care indicators. An incipient development in the field of medical devices takes the form of Smart Health Textiles, which can possess innovative properties such as thermoregulation, sensing, and antibacterial control. This protocol aims to describe the process for the development of a new type of smart clothing for individuals with reduced mobility and/or who are bedridden in order to prevent PIs. This paper's main purpose is to present the eight phases of the project, each consisting of tasks in specific phases: (i) product and process requirements and specifications; (ii and iii) study of the fibrous structure technology, textiles, and design; (iv and v) investigation of the sensor technology with respect to pressure, temperature, humidity, and bioactive properties; (vi and vii) production layout and adaptations in the manufacturing process; (viii) clinical trial. This project will introduce a new structural system and design for smart clothing to prevent PIs. New materials and architectures will be studied that provide better pressure relief, thermo-physiological control of the cutaneous microclimate, and personalisation of care.

2.
Polymers (Basel) ; 14(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35566899

RESUMO

Essential oils (EOs) are complex mixtures of volatile compounds extracted from different parts of plants by different methods. There is a large diversity of these natural substances with varying properties that lead to their common use in several areas. The agrochemical, pharmaceutical, medical, food, and textile industry, as well as cosmetic and hygiene applications are some of the areas where EOs are widely included. To overcome the limitation of EOs being highly volatile and reactive, microencapsulation has become one of the preferred methods to retain and control these compounds. This review explores the techniques for extracting essential oils from aromatic plant matter. Microencapsulation strategies and the available technologies are also reviewed, along with an in-depth overview of the current research and application of microencapsulated EOs.

3.
Polymers (Basel) ; 13(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924112

RESUMO

Poly (methyl methacrylate) (PMMA) is a thermoplastic synthetic polymer, which displays superior characteristics such as transparency, good tensile strength, and processability. Its performance can be improved by surface engineering via the use of functionalized thin film coatings, resulting in its versatility across a host of applications including, energy harvesting, dielectric layers and water purification. Modification of the PMMA surface can be achieved by atomic layer deposition (ALD), a vapor-phase, chemical deposition technique, which permits atomic-level control. However, PMMA presents a challenge for ALD due to its lack of active surface sites, necessary for gas precursor reaction, nucleation, and subsequent growth. The purpose of this review is to discuss the research related to the employment of PMMA as either a substrate, support, or masking layer over a range of ALD thin film growth techniques, namely, thermal, plasma-enhanced, and area-selective atomic layer deposition. It also highlights applications in the selected fields of flexible electronics, biomaterials, sensing, and photocatalysis, and underscores relevant characterization techniques. Further, it concludes with a prospective view of the role of ALD in PMMA processing.

4.
Materials (Basel) ; 13(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126445

RESUMO

The joining of alumina (Al2O3) to γ-TiAl and Ti6Al4V alloys, using Ag-Cu sputter-coated Ti brazing filler foil, was investigated. Brazing experiments were performed at 980 °C for 30 min in vacuum. The microstructure and chemical composition of the brazed interfaces were analyzed by scanning electron microscopy and by energy dispersive X-ray spectroscopy, respectively. A microstructural characterization of joints revealed that sound multilayered interfaces were produced using this novel brazing filler. Both interfaces are composed mainly of α-Ti, along with Ti2(Ag,Cu) and TiAg intermetallics. In the case of the brazing of γ-TiAl alloys, α2-Ti3Al and γ-TiAl intermetallics are also detected at the interface. Bonding to Al2O3 is promoted by the formation of a quite hard Ti-rich layer, which may reach a hardness up to 1872 HV 0.01 and is possibly composed of a mixture of α-Ti and Ti oxides. Hardness distribution maps indicate that no segregation of either soft or brittle phases occurs at the central regions of the interfaces or near the base Ti alloys. In addition, a smooth hardness transition was established between the interface of Al2O3 to either γ-TiAl or Ti6Al4V alloys.

5.
Microsc Microanal ; 25(1): 192-195, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30398131

RESUMO

The aim of this study is to evaluate the potential use of titanium foil coated with sputtered silver and copper films as a novel brazing filler for joining TiAl alloys. For this purpose, a detailed microstructural characterization of the resulting brazing interfaces was carried out. The development of brazing fillers that allow the joining of TiAl alloys without compromising the service temperature is a fruitful prospect. Brazing experiments were performed in a vacuum at 900, 950, and 980°C, with a dwell time of 30 min. Microstructural characterization reveals that brazing joints can be obtained successfully at 950 and 980°C. The interface consists of a large central region of α-Ti with an amount of Al and Ti-Ag compound and thin layers, mainly composed of intermetallic compounds, formed close to the base material. A novel brazing filler consisting of Ti foil coated with sputtered Ag and Cu films inhibits the extensive formation of soft (Ag) zones or coarse brittle Ti-Al-(Cu,Ni) particles. Hence, the need for post-brazing heat treatments for the joining of TiAl alloys was avoided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA