Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 682498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239860

RESUMO

Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.

2.
Mar Biotechnol (NY) ; 21(3): 416-429, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30874930

RESUMO

Considering the global trend in the search for alternative natural compounds with antioxidant and sun protection factor (SPF) boosting properties, bacterial carotenoids represent an opportunity for exploring pigments of natural origin which possess high antioxidant activity, lower toxicity, no residues, and no environmental risk and are readily decomposable. In this work, three pigmented bacteria from the Antarctic continent, named Arthrobacter agilis 50cyt, Zobellia laminarie 465, and Arthrobacter psychrochitiniphilus 366, were able to withstand UV-B and UV-C radiation. The pigments were extracted and tested for UV absorption, antioxidant capacity, photostability, and phototoxicity profile in murine fibroblasts (3T3 NRU PT-OECD TG 432) to evaluate their further potential use as UV filters. Furthermore, the pigments were identified by ultra-high-performance liquid chromatography-photodiode array detector-mass spectrometry (UPLC-PDA-MS/MS). The results showed that all pigments presented a very high antioxidant activity and good stability under exposure to UV light. However, except for a fraction of the A. agilis 50cyt pigment, they were shown to be phototoxic. A total of 18 different carotenoids were identified from 23 that were separated on a C18 column. The C50 carotenes bacterioruberin and decaprenoxanthin (including its variations) were confirmed for A. agilis 50cyt and A. psychrochitiniphilus 366, respectively. All-trans-bacterioruberin was identified as the pigment that did not express phototoxic activity in the 3T3 NRU PT assay (MPE < 0.1). Zeaxanthin, ß-cryptoxanthin, ß-carotene, and phytoene were detected in Z. laminarie 465. In conclusion, carotenoids identified in this work from Antarctic bacteria open perspectives for their further biotechnological application towards a more sustainable and environmentally friendly way of pigment exploitation.


Assuntos
Arthrobacter/química , Biotecnologia , Flavobacteriaceae/química , Pigmentos Biológicos/química , Regiões Antárticas , Carotenoides/química , Carotenoides/isolamento & purificação , Microbiologia Industrial , Pigmentos Biológicos/isolamento & purificação
3.
Antonie Van Leeuwenhoek ; 112(3): 479-490, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30302647

RESUMO

An iridescent yellow pigmented bacterium isolated from the Antarctic continent, named Cellulophaga fucicola strain 416, was found to be able to tolerate UV-B radiation. Its crude pigment extract was tested for antioxidant capacity, UV light stability and phototoxicity profile against murine fibroblast lines. The pigments were further isolated and chemically identified by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detectors. The results showed that the pigment extract presented weak stability under exposure to UV light, a phototoxic profile in the 3t3 Neutral Red Uptake test and a very high antioxidant activity, suggesting that it could be used as food and feed colourants. Zeaxanthin and two isomers of zeaxanthin, ß-cryptoxanthin and ß-carotene, were identified using a C18 column. These five carotenoids were the major pigments isolated from C. fucicola 416. In conclusion, the identification of pigments produced by the bacterial strain under study may help us understand how bacteria thrive in high UV and cold environments, and opens avenues for further biotechnological application towards a more sustainable and environmentally friendly way of pigment exploitation.


Assuntos
Antioxidantes/análise , Carotenoides/análise , Flavobacteriaceae/química , Flavobacteriaceae/isolamento & purificação , Pigmentos Biológicos/análise , Animais , Regiões Antárticas , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Carotenoides/química , Carotenoides/isolamento & purificação , Carotenoides/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavobacteriaceae/efeitos da radiação , Espectrometria de Massas , Camundongos , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Raios Ultravioleta
4.
Rev. bras. farmacogn ; 23(1): 101-107, Jan.-Feb. 2013. ilus, graf
Artigo em Inglês | LILACS | ID: lil-666165

RESUMO

Some species of plants are notable for the wide range of biologically active constituents in their tissues. Chemical and pharmacological studies of Vellozia squamata Pohl, Velloziaceae, popularly known in Brasil as "canela-de-ema" are scarce, but showed the presence of di-and triterpenoid that may be of scientific interest. In the present study the hydroalcoholic extracts from leafs and stems of V. squamata were submitted to phytochemical prospection to identify the principal groups of constituents, and the antioxidant activity was determined by DPPH method. The hydroethanolic extracts presented higher antioxidant activity. Thus, nanoemulsion formulations were prepared using the method of phase inversion. Accelerated stability tests, such as heat stress and centrifugation were made, and physical and chemical properties of the nanoemulsions were established. Stable formulations were obtained from both extracts from leafs and stems. By the results was possible to establish the potential application of hydroalcoholic extracts from V. squamata in development of products with antioxidant properties and demonstrate a promising pharmaceutical product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA