Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Bioeng Transl Med ; 8(5): e10541, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693068

RESUMO

Multiple studies have shown that the progression of breast cancer depends on multiple signaling pathways, suggesting that therapies with multitargeted anticancer agents will offer improved therapeutic benefits through synergistic effects in inhibiting cancer growth. Dual-targeted inhibitors of phosphoinositide 3-kinase (PI3-K) and histone deacetylase (HDAC) have emerged as promising cancer therapy candidates. However, poor aqueous solubility and bioavailability limited their efficacy in cancer. The present study investigates the encapsulation of a PI3-Kδ/HDAC6 dual inhibitor into hybrid block copolymers (polylactic acid-methoxy polyethylene glycol; polylactic acid-polyethylene glycol-polypropylene glycol-polyethylene glycol-polylactic acid) (HSB-510) as a delivery system to target PI3-Kδ and HDAC6 pathways in breast cancer cells. The prepared HSB-510 showed an average diameter of 96 ± 3 nm, a zeta potential of -17 ± 2 mV, and PDI of ˂0.1 with a slow and sustained release profile of PI3-Kδ/HDAC6 inhibitors in a nonphysiological buffer. In vitro studies with HSB-510 have demonstrated substantial growth inhibition of breast cancer cell lines, MDA-MB-468, SUM-149, MCF-7, and Ehrlich ascites carcinoma (EAC) as well as downregulation of phospho-AKT, phospho-ERK, and c-Myc levels. Importantly, bi-weekly treatment of Balb/c wild-type mice harboring EAC cells with HSB-510 at a dose of 25 mg/kg resulted in significant tumor growth inhibition. The treatment with HSB-510 was without any significant effect on the body weights of the mice. These results demonstrate that a novel Quatramer encapsulation of a PI3-Kδ/HDAC6 dual inhibitor (HSB-510) represents an approach for the successful targeting of breast cancer and potentially other cancer types.

3.
BMC Genomics ; 24(1): 460, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587458

RESUMO

BACKGROUND: Approximately 4-8% of the world suffers from a rare disease. Rare diseases are often difficult to diagnose, and many do not have approved therapies. Genetic sequencing has the potential to shorten the current diagnostic process, increase mechanistic understanding, and facilitate research on therapeutic approaches but is limited by the difficulty of novel variant pathogenicity interpretation and the communication of known causative variants. It is unknown how many published rare disease variants are currently accessible in the public domain. RESULTS: This study investigated the translation of knowledge of variants reported in published manuscripts to publicly accessible variant databases. Variants, symptoms, biochemical assay results, and protein function from literature on the SLC6A8 gene associated with X-linked Creatine Transporter Deficiency (CTD) were curated and reported as a highly annotated dataset of variants with clinical context and functional details. Variants were harmonized, their availability in existing variant databases was analyzed and pathogenicity assignments were compared with impact algorithm predictions. 24% of the pathogenic variants found in PubMed articles were not captured in any database used in this analysis while only 65% of the published variants received an accurate pathogenicity prediction from at least one impact prediction algorithm. CONCLUSIONS: Despite being published in the literature, pathogenicity data on patient variants may remain inaccessible for genetic diagnosis, therapeutic target identification, mechanistic understanding, or hypothesis generation. Clinical and functional details presented in the literature are important to make pathogenicity assessments. Impact predictions remain imperfect but are improving, especially for single nucleotide exonic variants, however such predictions are less accurate or unavailable for intronic and multi-nucleotide variants. Developing text mining workflows that use natural language processing for identifying diseases, genes and variants, along with impact prediction algorithms and integrating with details on clinical phenotypes and functional assessments might be a promising approach to scale literature mining of variants and assigning correct pathogenicity. The curated variants list created by this effort includes context details to improve any such efforts on variant curation for rare diseases.


Assuntos
Creatina , Doenças Raras , Humanos , Doenças Raras/genética , Íntrons , Algoritmos , Nucleotídeos
4.
Commun Biol ; 6(1): 856, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591946

RESUMO

Canine osteosarcoma is increasingly recognized as an informative model for human osteosarcoma. Here we show in one of the largest clinically annotated canine osteosarcoma transcriptional datasets that two previously reported, as well as de novo gene signatures devised through single sample Gene Set Enrichment Analysis (ssGSEA), have prognostic utility in both human and canine patients. Shared molecular pathway alterations are seen in immune cell signaling and activation including TH1 and TH2 signaling, interferon signaling, and inflammatory responses. Virtual cell sorting to estimate immune cell populations within canine and human tumors showed similar trends, predominantly for macrophages and CD8+ T cells. Immunohistochemical staining verified the increased presence of immune cells in tumors exhibiting immune gene enrichment. Collectively these findings further validate naturally occurring osteosarcoma of the pet dog as a translationally relevant patient model for humans and improve our understanding of the immunologic and genomic landscape of the disease in both species.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Animais , Cães , Prognóstico , Transcriptoma , Genômica , Osteossarcoma/genética , Osteossarcoma/veterinária , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária
5.
Elife ; 122023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975211

RESUMO

Ciliopathies manifest from sensory abnormalities to syndromic disorders with multi-organ pathologies, with retinal degeneration a highly penetrant phenotype. Photoreceptor cell death is a major cause of incurable blindness in retinal ciliopathies. To identify drug candidates to maintain photoreceptor survival, we performed an unbiased, high-throughput screening of over 6000 bioactive small molecules using retinal organoids differentiated from induced pluripotent stem cells (iPSC) of rd16 mouse, which is a model of Leber congenital amaurosis (LCA) type 10 caused by mutations in the cilia-centrosomal gene CEP290. We identified five non-toxic positive hits, including the lead molecule reserpine, which maintained photoreceptor development and survival in rd16 organoids. Reserpine also improved photoreceptors in retinal organoids derived from induced pluripotent stem cells of LCA10 patients and in rd16 mouse retina in vivo. Reserpine-treated patient organoids revealed modulation of signaling pathways related to cell survival/death, metabolism, and proteostasis. Further investigation uncovered dysregulation of autophagy associated with compromised primary cilium biogenesis in patient organoids and rd16 mouse retina. Reserpine partially restored the balance between autophagy and the ubiquitin-proteasome system at least in part by increasing the cargo adaptor p62, resulting in improved primary cilium assembly. Our study identifies effective drug candidates in preclinical studies of CEP290 retinal ciliopathies through cross-species drug discovery using iPSC-derived organoids, highlights the impact of proteostasis in the pathogenesis of ciliopathies, and provides new insights for treatments of retinal neurodegeneration.


Leber congenital amaurosis (LCA) is an inherited disease that affects the eyes and causes sight loss in early childhood, which generally gets worse over time. Individuals with this condition have genetic mutations that result in the death of light-sensitive cells, known as photoreceptors, in a region called the retina at the back of the eye. Patients carrying a genetic change in the gene CEP290 account for 20-25% of all LCA. At present, treatment options are only available for a limited number of patients with LCA. One option is to use small molecules as drugs that may target or bypass the faulty processes within the eye to help the photoreceptors survive in many different forms of LCA and other retinal diseases. However, over 90% of new drug candidates fail the first phase of clinical trials for human diseases. This in part due to the candidates having been developed using cell cultures or animal models that do not faithfully reflect how the human body works. Recent advances in cell and developmental biology are now enabling researchers to use stem cells derived from humans to grow retina tissues in a dish in the laboratory. These tissues, known as retinal organoids, behave in a more similar way to retinas in human eyes than those of traditional animal models. However, the methods for making and maintaining human retinal organoids are time-consuming and labor-intensive, which has so far limited their use in the search for new therapies. To address this challenge, Chen et al. developed a large-scale approach to grow retinal organoids from rd16 mutant mice stem cells (which are a good model for LCA caused by mutations to CEP290) and used the photoreceptors from these organoids to screen over 6,000 existing drugs for their ability to promote the survival of photoreceptors. The experiments found that the drug reserpine, which was previously approved to treat high blood pressure, also helped photoreceptors to survive in the diseased organoids. Reserpine also had a similar effect in retinal organoids derived from human patients with LCA and in the rd16 mice themselves. Further experiments suggest that reserpine may help patients with LCA by partially restoring a process by which the body destroys and recycles old and damaged proteins in the cells. The next steps following on from this work will be to perform further tests to demonstrate that this use of reserpine is safe to enter clinical trials as a treatment for LCA and other similar eye diseases.


Assuntos
Ciliopatias , Reserpina , Camundongos , Animais , Reserpina/farmacologia , Reserpina/metabolismo , Proteostase , Antígenos de Neoplasias/genética , Proteínas do Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo
6.
Nat Microbiol ; 6(11): 1398-1409, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675384

RESUMO

La Crosse virus (LACV) is a mosquito-borne orthobunyavirus that causes approximately 60 to 80 hospitalized pediatric encephalitis cases in the United States yearly. The primary treatment for most viral encephalitis, including LACV, is palliative care, and specific antiviral therapeutics are needed. We screened the National Center for Advancing Translational Sciences library of 3,833 FDA-approved and bioactive small molecules for the ability to inhibit LACV-induced death in SH-SY5Y neuronal cells. The top three hits from the initial screen were validated by examining their ability to inhibit virus-induced cell death in multiple neuronal cell lines. Rottlerin consistently reduced LACV-induced death by 50% in multiple human and mouse neuronal cell lines with an effective concentration of 0.16-0.69 µg ml-1 depending on cell line. Rottlerin was effective up to 12 hours post-infection in vitro and inhibited virus particle trafficking from the Golgi apparatus to trans-Golgi vesicles. In human inducible pluripotent stem cell-derived cerebral organoids, rottlerin reduced virus production by one log and cell death by 35% compared with dimethyl sulfoxide-treated controls. Administration of rottlerin in mice by intraperitoneal or intracranial routes starting at 3 days post-infection decreased disease development by 30-50%. Furthermore, rottlerin also inhibited virus replication of other pathogenic California serogroup orthobunyaviruses (Jamestown Canyon and Tahyna virus) in neuronal cell lines.


Assuntos
Acetofenonas/administração & dosagem , Antivirais/administração & dosagem , Benzopiranos/administração & dosagem , Encefalite da Califórnia/virologia , Complexo de Golgi/virologia , Vírus La Crosse/efeitos dos fármacos , Vírus La Crosse/fisiologia , Neurônios/virologia , Animais , Encefalite da Califórnia/tratamento farmacológico , Feminino , Complexo de Golgi/efeitos dos fármacos , Humanos , Vírus La Crosse/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
PLoS Comput Biol ; 17(9): e1009450, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570764

RESUMO

Understanding relationships between spontaneous cancer in companion (pet) canines and humans can facilitate biomarker and drug development in both species. Towards this end we developed an experimental-bioinformatic protocol that analyzes canine transcriptomics data in the context of existing human data to evaluate comparative relevance of canine to human cancer. We used this protocol to characterize five canine cancers: melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, in 60 dogs. We applied an unsupervised, iterative clustering method that yielded five co-expression modules and found that each cancer exhibited a unique module expression profile. We constructed cancer models based on the co-expression modules and used the models to successfully classify the canine data. These canine-derived models also successfully classified human tumors representing the same cancers, indicating shared cancer biology between canines and humans. Annotation of the module genes identified cancer specific pathways relevant to cells-of-origin and tumor biology. For example, annotations associated with melanin production (PMEL, GPNMB, and BACE2), synthesis of bone material (COL5A2, COL6A3, and COL12A1), synthesis of pulmonary surfactant (CTSH, LPCAT1, and NAPSA), ribosomal proteins (RPL8, RPS7, and RPLP0), and epigenetic regulation (EDEM1, PTK2B, and JAK1) were unique to melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, respectively. In total, 152 biomarker candidates were selected from highly expressing modules for each cancer type. Many of these biomarker candidates are under-explored as drug discovery targets and warrant further study. The demonstrated transferability of classification models from canines to humans enforces the idea that tumor biology, biomarker targets, and associated therapeutics, discovered in canines, may translate to human medicine.


Assuntos
Doenças do Cão/genética , Redes Reguladoras de Genes , Neoplasias/genética , Neoplasias/veterinária , Animais , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Biologia Computacional , Doenças do Cão/classificação , Cães , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/veterinária , Linfoma de Células B/genética , Linfoma de Células B/veterinária , Linfoma de Células T/genética , Linfoma de Células T/veterinária , Melanoma/genética , Melanoma/veterinária , Anotação de Sequência Molecular , Terapia de Alvo Molecular , Neoplasias/classificação , Oncogenes , Osteossarcoma/genética , Osteossarcoma/veterinária , Especificidade da Espécie , Pesquisa Translacional Biomédica
8.
Blood Cells Mol Dis ; 89: 102561, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33744514

RESUMO

Increased expression of developmentally silenced fetal globin (HBG) reduces the clinical severity of ß-hemoglobinopathies. Benserazide has a relatively benign safety profile having been approved for 50 years in Europe and Canada for Parkinson's disease treatment. Benserazide was shown to activate HBG gene transcription in a high throughput screen, and subsequent studies confirmed fetal hemoglobin (HbF) induction in erythroid progenitors from hemoglobinopathy patients, transgenic mice containing the entire human ß-globin gene (ß-YAC) and anemic baboons. The goal of this study is to evaluate efficacies and plasma exposure profiles of benserazide racemate and its enantiomers to select the chemical form for clinical development. Intermittent treatment with all forms of benserazide in ß-YAC mice significantly increased proportions of red blood cells expressing HbF and HbF protein per cell with similar pharmacokinetic profiles and with no cytopenia. These data contribute to the regulatory justification for development of the benserazide racemate. Additionally, dose ranges and frequencies required for HbF induction using racemic benserazide were explored. Orally administered escalating doses of benserazide in an anemic baboon induced γ-globin mRNA up to 13-fold and establish an intermittent dose regimen for clinical studies as a therapeutic candidate for potential treatment of ß-hemoglobinopathies.


Assuntos
Anemia Falciforme/tratamento farmacológico , Benserazida/farmacologia , Dopaminérgicos/farmacologia , Hemoglobina Fetal/genética , Regulação para Cima/efeitos dos fármacos , Talassemia beta/tratamento farmacológico , Anemia Falciforme/genética , Animais , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Papio , Talassemia beta/genética , gama-Globinas/genética
9.
ACS Pharmacol Transl Sci ; 3(5): 948-964, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33073193

RESUMO

Drug resistance is a constant threat to malaria control efforts making it important to maintain a good pipeline of new drug candidates. Of particular need are compounds that also block transmission by targeting sexual stage parasites. Mature sexual stages are relatively resistant to all currently used antimalarials except the 8-aminoquinolines that are not commonly used due to potential side effects. Here, we synthesized a new Torin 2 derivative, NCATS-SM3710 with increased aqueous solubility and specificity for Plasmodium and demonstrate potent in vivo activity against all P. berghei life cycle stages. NCATS-SM3710 also has low nanomolar EC50s against in vitro cultured asexual P. falciparum parasites (0.38 ± 0.04 nM) and late stage gametocytes (5.77 ± 1 nM). Two independent NCATS-SM3710/Torin 2 resistant P. falciparum parasite lines produced by growth in sublethal Torin 2 concentrations both had genetic changes in PF3D7_0509800, annotated as a phosphatidylinositol 4 kinase (Pf PI4KIIIß). One line had a point mutation in the putative active site (V1357G), and the other line had a duplication of a locus containing Pf PI4KIIIß. Both lines were also resistant to other Pf PI4K inhibitors. In addition NCATS-SM3710 inhibited purified Pf PI4KIIIß with an IC50 of 2.0 ± 0.30 nM. Together the results demonstrate that Pf PI4KIIIß is the target of Torin 2 and NCATS-SM3710 and provide new options for potent multistage drug development.

10.
FASEB J ; 34(8): 10146-10167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32536017

RESUMO

Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.


Assuntos
Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Animais , Linhagem Celular , Eletrorretinografia/métodos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Células NIH 3T3 , Células Fotorreceptoras/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Retina/metabolismo , Retinose Pigmentar/genética , Rodopsina/genética
11.
J Med Chem ; 63(8): 4256-4292, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32212730

RESUMO

A series of quinazolin-4-one based hydroxamic acids was rationally designed and synthesized as novel dual PI3K/HDAC inhibitors by incorporating an HDAC pharmacophore into a PI3K inhibitor (Idelalisib) via an optimized linker. Several of these dual inhibitors were highly potent (IC50 < 10 nM) and selective against PI3Kγ, δ and HDAC6 enzymes and exhibited good antiproliferative activity against multiple cancer cell lines. The lead compound 48c, induced necrosis in several mutant and FLT3-resistant AML cell lines and primary blasts from AML patients, while showing no cytotoxicity against normal PBMCs, NIH3T3, and HEK293 cells. Target engagement of PI3Kδ and HDAC6 by 48c was demonstrated in MV411 cells using the cellular thermal shift assay (CETSA). Compound 48c showed good pharmacokinetics properties in mice via intraperitoneal (ip) administration and provides a means to examine the biological effects of inhibiting these two important enzymes with a single molecule, either in vitro or in vivo.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/síntese química , Ácidos Hidroxâmicos/síntese química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Quinazolinonas/síntese química , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Estrutura Terciária de Proteína , Quinazolinonas/farmacologia , Ratos
12.
J Clin Invest ; 130(4): 2017-2023, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149729

RESUMO

Tyrosine kinase domain (TKD) mutations contribute to acquired resistance to FMS-like tyrosine kinase 3 (FLT3) inhibitors used to treat FLT3-mutant acute myeloid leukemia (AML). We report a cocrystal structure of FLT3 with a type I inhibitor, NCGC1481, that retained potent binding and activity against FLT3 TKD and gatekeeper mutations. Relative to the current generation of advanced FLT3 inhibitors, NCGC1481 exhibited superior antileukemic activity against the common, clinically relevant FLT3-mutant AML cells in vitro and in vivo.


Assuntos
Sistemas de Liberação de Medicamentos , Leucemia Mieloide Aguda , Mutação , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms , Animais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Camundongos , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
Sci Transl Med ; 11(508)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484791

RESUMO

Targeted inhibitors to oncogenic kinases demonstrate encouraging clinical responses early in the treatment course; however, most patients will relapse because of target-dependent mechanisms that mitigate enzyme-inhibitor binding or through target-independent mechanisms, such as alternate activation of survival and proliferation pathways, known as adaptive resistance. Here, we describe mechanisms of adaptive resistance in FMS-like receptor tyrosine kinase (FLT3)-mutant acute myeloid leukemia (AML) by examining integrative in-cell kinase and gene regulatory network responses after oncogenic signaling blockade by FLT3 inhibitors (FLT3i). We identified activation of innate immune stress response pathways after treatment of FLT3-mutant AML cells with FLT3i and showed that innate immune pathway activation via the interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) complex contributes to adaptive resistance in FLT3-mutant AML cells. To overcome this adaptive resistance mechanism, we developed a small molecule that simultaneously inhibits FLT3 and IRAK1/4 kinases. The multikinase FLT3-IRAK1/4 inhibitor eliminated adaptively resistant FLT3-mutant AML cells in vitro and in vivo and displayed superior efficacy as compared to current targeted FLT3 therapies. These findings uncover a polypharmacologic strategy for overcoming adaptive resistance to therapy in AML by targeting immune stress response pathways.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Duplicação Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leucemia Mieloide Aguda/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
14.
Mol Cancer Ther ; 18(7): 1265-1277, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31092562

RESUMO

Targeting of extrinsic apoptosis pathway by TNF-related apoptosis-inducing ligand (TRAIL) is an attractive approach for cancer therapy. However, two TRAIL drug candidates failed in clinical trials due to lack of efficacy. We identified 17-hydroxy wortmannin (17-HW) in a drug repurposing screen that resensitized TRAIL's response in the resistant colon cancer cells. The deficiency of caspase-8 in drug-resistant cells along with defects in apoptotic cell death was corrected by 17-HW, an inhibitor of PIK3C3-beclin 1 (BECN1) complex and autophagy activity. Further study found that BECN1 significantly increased in the TRAIL-resistant cells, resulting in increased autophagosome formation and enhanced autophagy flux. The extracellular domain (ECD) of BECN1 directly bound to the caspase-8 catalytic subunit (p10), leading to sequestration of caspase-8 in the autophagosome and its subsequent degradation. Inhibition of BECN1 restored the caspase-8 level and TRAIL's apoptotic response in the resistant colon cancer cells. An analysis of 120 colon cancer patient tissues revealed a correlation of a subgroup of patients (30.8%, 37/120) who have high BECN1 level and low caspase-8 level with a poor survival rate. Our study demonstrates that the increased BECN1 accompanied by enhanced autophagy activity is responsible for the TRAIL resistance, and a combination of TRAIL with a PIK3C3-BECN1 inhibitor is a promising therapeutic approach for the treatment of colon cancer.


Assuntos
Proteína Beclina-1/metabolismo , Neoplasias do Colo/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Wortmanina/metabolismo , Autofagia , Linhagem Celular Tumoral , Humanos , Transfecção
15.
Bioorg Med Chem Lett ; 28(20): 3356-3362, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30227946

RESUMO

The pyrazolo[1,5-a]pyrimidine LDN-193189 is a potent inhibitor of activin receptor-like kinase 2 (ALK2) but is nonselective for highly homologous ALK3 and shows only modest kinome selectivity. Herein, we describe the discovery of a novel series of potent and selective ALK2 inhibitors by replacing the quinolinyl with a 4-(sulfamoyl)naphthyl, yielding ALK2 inhibitors that exhibit not only excellent discrimination versus ALK3 but also high kinome selectivity. In addition, the optimized compound 23 demonstrates good ADME and in vivo pharmacokinetic properties.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Receptores de Ativinas Tipo I/química , Animais , Sítios de Ligação , Descoberta de Drogas , Humanos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacocinética , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacocinética
16.
J Med Chem ; 61(8): 3582-3594, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29624387

RESUMO

The Ebola virus (EBOV) causes severe human infection that lacks effective treatment. A recent screen identified a series of compounds that block EBOV-like particle entry into human cells. Using data from this screen, quantitative structure-activity relationship models were built and employed for virtual screening of a ∼17 million compound library. Experimental testing of 102 hits yielded 14 compounds with IC50 values under 10 µM, including several sub-micromolar inhibitors, and more than 10-fold selectivity against host cytotoxicity. These confirmed hits include FDA-approved drugs and clinical candidates with non-antiviral indications, as well as compounds with novel scaffolds and no previously known bioactivity. Five selected hits inhibited BSL-4 live-EBOV infection in a dose-dependent manner, including vindesine (0.34 µM). Additional studies of these novel anti-EBOV compounds revealed their mechanisms of action, including the inhibition of NPC1 protein, cathepsin B/L, and lysosomal function. Compounds identified in this study are among the most potent and well-characterized anti-EBOV inhibitors reported to date.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/química , Chlorocebus aethiops , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Células Vero , Internalização do Vírus/efeitos dos fármacos
17.
Br J Pharmacol ; 175(2): 262-271, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898923

RESUMO

BACKGROUND AND PURPOSE: Human parathyroid hormone (PTH) is critical for maintaining physiological calcium homeostasis and plays an important role in the formation and maintenance of the bone. Full-length PTH and a truncated peptide form are approved for treatment of hypoparathyroidism and osteoporosis respectively. Our initial goal was to develop an improved PTH therapy for osteoporosis, but clinical development was halted. The novel compound was then repurposed as an improved therapy for hypoparathyroidism. EXPERIMENTAL APPROACH: A longer-acting form of PTH was synthesised by altering the peptide to increase cell surface residence time of the bound ligand to its receptor. In vitro screening identified a compound, which was tested in an animal model of osteoporosis before entering human trials. This compound was subsequently tested in two independent animal models of hypoparathyroidism. KEY RESULTS: The peptide identified, LY627-2K, exhibited delayed internalization kinetics. In an ovariectomy-induced bone loss rat model, LY627-2K demonstrated improved vertebral bone mineral density and biomechanical properties at skeletal sites and a modest increase in serum calcium. In a Phase I clinical study, dose-dependent increases in serum calcium were reproduced. These observations prompted us to explore a second indication, hypoparathyroidism. In animal models of this disease, LY627-2K restored serum calcium, comparing favourably to treatment with wild-type PTH. CONCLUSIONS AND IMPLICATIONS: We summarize the repositioning of a therapeutic candidate with substantial preclinical and clinical data. Our results support its repurposing and continued development, from a common indication (osteoporosis) to a rare disease (hypoparathyroidism) by exploiting a shared molecular target. LINKED ARTICLES: This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.


Assuntos
Reposicionamento de Medicamentos/métodos , Hipoparatireoidismo/tratamento farmacológico , Hormônio Paratireóideo/análogos & derivados , Animais , Densidade Óssea/efeitos dos fármacos , Cálcio/sangue , Feminino , Humanos , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Ratos
18.
Malar J ; 16(1): 147, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407766

RESUMO

BACKGROUND: Blocking malaria transmission is an important step in eradicating malaria. In the field, transmission requires the production of sexual stage Plasmodium parasites, called gametocytes, which are not effectively killed by the commonly used anti-malarials allowing individuals to remain infectious after clearance of asexual parasites. METHODS: To identify new gametocytocidal compounds, a library of 45,056 compounds with diverse structures was screened using a high throughput gametocyte viability assay. The characteristics of active hits were further evaluated against asexual stage parasites in a growth inhibition assay. Their cytotoxicity were tested against mammalian cells in a cytotoxicity assay. The chemical scaffold similarity of active hits were studied using scaffold cluster analysis. RESULTS: A set of 23 compounds were identified and further confirmed for their activity against gametocytes. All the 23 confirmed compounds possess dual-activities against both gametocytes responsible for human to mosquito transmission and asexual parasites that cause the clinical symptoms. Three of these compounds were fourfold more active against gametocytes than asexual parasites. Further cheminformatic analysis revealed three sets of novel scaffolds, including highly selective 4-1H-pyrazol-5-yl piperidine analogs. CONCLUSIONS: This study revealed important new structural scaffolds that can be used as starting points for dual activity anti-malarial drug development.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estrutura Molecular
19.
Antiviral Res ; 137: 165-172, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890675

RESUMO

Although a group of FDA-approved drugs were previously identified with activity against Ebola virus (EBOV), most of them are not clinically useful because their human blood concentrations are not high enough to inhibit EBOV infection. We screened 795 unique three-drug combinations in an EBOV entry assay. Two sets of three-drug combinations, toremifene-mefloquine-posaconazole and toremifene-clarithromycin-posaconazole, were identified that effectively blocked EBOV entry and were further validated for inhibition of live EBOV infection. The individual drug concentrations in the combinations were reduced to clinically relevant levels. We identified mechanisms of action of these drugs: functional inhibitions of Niemann-Pick C1, acid sphingomyelinase, and lysosomal calcium release. Our findings identify the drug combinations with potential to treat EBOV infection.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Claritromicina/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Ensaios de Triagem em Larga Escala , Humanos , Mefloquina/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/efeitos dos fármacos , Toremifeno/farmacologia , Triazóis/farmacologia , Células Vero
20.
mBio ; 7(4)2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27486194

RESUMO

UNLABELLED: Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS) screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development. IMPORTANCE: Cryptococcosis is a neglected fungal meningitis that causes approximately half a million deaths annually. The most effective antifungal agent, amphotericin B, was developed in the 1950s, and no effective medicine has been developed for this disease since that time. A key aspect of amphotericin B's effectiveness is thought to be because of its ability to kill the fungus (fungicidal activity), rather than just stop or slow its growth. The present study utilized a recently identified fungicidal agent, bithionol, to identify potential fungicidal drug targets that can be used in developing modern fungicidal agents. A combined protein and genetic analysis approach was used to identify a class of enzymes, dehydrogenases, that the fungus uses to maintain homeostasis with regard to sugar nutrients. Similarities in the drug target site were found that resulted in simultaneous inhibition and killing of the fungus by bithionol. These studies thus identify a common, multitarget site for antifungal development.


Assuntos
Antifúngicos/farmacologia , Bitionol/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/enzimologia , Oxirredutases/antagonistas & inibidores , Citosol/química , Mecanismo Genético de Compensação de Dose , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA