Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392118

RESUMO

The physics governing the fluid dynamics of bio-inspired flapping wings is effectively characterized by partial differential equations (PDEs). Nevertheless, the process of discretizing these equations at spatiotemporal scales is notably time consuming and resource intensive. Traditional PDE-based computations are constrained in their applicability, which is mainly due to the presence of numerous shape parameters and intricate flow patterns associated with bionic flapping wings. Consequently, there is a significant demand for a rapid and accurate solution to nonlinear PDEs, to facilitate the analysis of bionic flapping structures. Deep learning, especially physics-informed deep learning (PINN), offers an alternative due to its great nonlinear curve-fitting capability. In the present work, a hybrid coarse-data-driven physics-informed neural network model (HCDD-PINN) is proposed to improve the accuracy and reliability of predicting the time evolution of nonlinear PDEs solutions, by using an order-of-magnitude-coarser grid than traditional computational fluid dynamics (CFDs) require as internal training data. The architecture is devised to enforce the initial and boundary conditions, and incorporate the governing equations and the low-resolution spatiotemporal internal data into the loss function of the neural network, to drive the training. Compared to the original PINN with no internal data, the training and predicting dynamics of HCDD-PINN with different resolutions of coarse internal data are analyzed on the problem relevant to the two-dimensional unsteady flapping wing, which involves unsteady flow features and moving boundaries. Additionally, a hyper-parametrical study is conducted to obtain an optimal model for the problem under consideration, which is then utilized for investigating the effects of the snapshot and fraction of the coarse internal data on the HCDD-PINN's performances. The results show that the proposed framework has a sufficient stability and accuracy for solving the considered biomimetic flapping-wing problem, and its great potential means that it can be considered as an alternative to accelerate or replace traditional CFD solvers in the future. The interested variables of the flow field at any instant can be rapidly obtained by the trained HCDD-PINN model, which is superior to the traditional CFD method that usually needs to be re-run. For the three-dimensional and optimization problems of flapping wings, the advantages of the proposed method are supposedly even more apparent.

2.
Biomed Eng Online ; 10: 52, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21682851

RESUMO

BACKGROUND: Previous research shows that the flow dynamics in the left ventricle (LV) reveal important information about cardiac health. This information can be used in early diagnosis of patients with potential heart problems. The current study introduces a patient-specific cardiovascular-modelling system (CMS) which simulates the flow dynamics in the LV to facilitate physicians in early diagnosis of patients before heart failure. METHODS: The proposed system will identify possible disease conditions and facilitates early diagnosis through hybrid computational fluid dynamics (CFD) simulation and time-resolved magnetic resonance imaging (4-D MRI). The simulation is based on the 3-D heart model, which can simultaneously compute fluid and elastic boundary motions using the immersed boundary method. At this preliminary stage, the 4-D MRI is used to provide an appropriate comparison. This allows flexible investigation of the flow features in the ventricles and their responses. RESULTS: The results simulate various flow rates and kinetic energy in the diastole and systole phases, demonstrating the feasibility of capturing some of the important characteristics of the heart during different phases. However, some discrepancies exist in the pulmonary vein and aorta flow rate between the numerical and experimental data. Further studies are essential to investigate and solve the remaining problems before using the data in clinical diagnostics. CONCLUSIONS: The results show that by using a simple reservoir pressure boundary condition (RPBC), we are able to capture some essential variations found in the clinical data. Our approach establishes a first-step framework of a practical patient-specific CMS, which comprises a 3-D CFD model (without involving actual hemodynamic data yet) to simulate the heart and the 4-D PC-MRI system. At this stage, the 4-D PC-MRI system is used for verification purpose rather than input. This brings us closer to our goal of developing a practical patient-specific CMS, which will be pursued next. We anticipate that in the future, this hybrid system can potentially identify possible disease conditions in LV through comprehensive analysis and facilitates physicians in early diagnosis of probable cardiac problems.


Assuntos
Sistema Cardiovascular/metabolismo , Cardiopatias/diagnóstico , Modelos Cardiovasculares , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Feminino , Ventrículos do Coração/metabolismo , Hemodinâmica , Humanos , Hidrodinâmica , Interpretação de Imagem Assistida por Computador/métodos , Cinética , Imageamento por Ressonância Magnética/métodos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA