Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 13(16): e4742, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37638305

RESUMO

Lipids can play diverse roles in metabolism, signaling, transport across membranes, regulating body temperature, and inflammation. Some viruses have evolved to exploit lipids in human cells to promote viral entry, fusion, replication, assembly, and energy production through fatty acid beta-oxidation. Hence, studying the virus-lipid interactions provides an opportunity to understand the biological processes involved in the viral life cycle, which can facilitate the development of antivirals. Due to the diversity and complexity of lipids, the assessment of lipid utilization in infected host cells can be challenging. However, the development of mass spectrometry, bioenergetics profiling, and bioinformatics has significantly advanced our knowledge on the study of lipidomics. Herein, we describe the detailed methods for lipid extraction, mass spectrometry, and assessment of fatty acid oxidation on cellular bioenergetics, as well as the bioinformatics approaches for detailed lipid analysis and utilization in host cells. These methods were employed for the investigation of lipid alterations in TMEM41B- and VMP1-deficient cells, where we previously found global dysregulations of the lipidome in these cells. Furthermore, we developed a web app to plot clustermaps or heatmaps for mass spectrometry data that is open source and can be hosted locally or at https://kuanrongchan-lipid-metabolite-analysis-app-k4im47.streamlit.app/. This protocol provides an efficient step-by-step methodology to assess lipid composition and usage in host cells.

2.
Sci Adv ; 9(8): eadd9280, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812322

RESUMO

Antibiotic resistance critically limits treatment options for infection caused by opportunistic pathogens such as enterococci. Here, we investigate the antibiotic and immunological activity of the anticancer agent mitoxantrone (MTX) in vitro and in vivo against vancomycin-resistant Enterococcus faecalis (VRE). We show that, in vitro, MTX is a potent antibiotic against Gram-positive bacteria through induction of reactive oxygen species and DNA damage. MTX also synergizes with vancomycin against VRE, rendering the resistant strains more permeable to MTX. In a murine wound infection model, single-dose MTX treatment effectively reduces VRE numbers, with further reduction when combined with vancomycin. Multiple MTX treatments accelerate wound closure. MTX also promotes macrophage recruitment and proinflammatory cytokine induction at the wound site and augments intracellular bacterial killing in macrophages by up-regulating the expression of lysosomal enzymes. These results show that MTX represents a promising bacterium- and host-targeted therapeutic for overcoming vancomycin resistance.


Assuntos
Enterococcus faecalis , Enterococos Resistentes à Vancomicina , Animais , Camundongos , Enterococcus faecalis/genética , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Mitoxantrona/farmacologia , Antibacterianos/farmacologia , Enterococos Resistentes à Vancomicina/genética
3.
PLoS Pathog ; 18(8): e1010763, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939522

RESUMO

Transmembrane Protein 41B (TMEM41B) and Vacuole Membrane Protein 1 (VMP1) are two ER-associated lipid scramblases that play a role in autophagosome formation and cellular lipid metabolism. TMEM41B is also a recently validated host factor required by flaviviruses and coronaviruses. However, the exact underlying mechanism of TMEM41B in promoting viral infections remains an open question. Here, we validated that both TMEM41B and VMP1 are essential host dependency factors for all four serotypes of dengue virus (DENV) and human coronavirus OC43 (HCoV-OC43), but not chikungunya virus (CHIKV). While HCoV-OC43 failed to replicate entirely in both TMEM41B- and VMP1-deficient cells, we detected diminished levels of DENV infections in these cell lines, which were accompanied by upregulation of the innate immune dsRNA sensors, RIG-I and MDA5. Nonetheless, this upregulation did not correspondingly induce the downstream effector TBK1 activation and Interferon-beta expression. Despite low levels of DENV replication, classical DENV replication organelles were undetectable in the infected TMEM41B-deficient cells, suggesting that the upregulation of the dsRNA sensors is likely a consequence of aberrant viral replication rather than a causal factor for reduced DENV infection. Intriguingly, we uncovered that the inhibitory effect of TMEM41B deficiency on DENV replication, but not HCoV-OC43, can be partially reversed using exogenous fatty acid supplements. In contrast, VMP1 deficiency cannot be rescued using the metabolite treatment. In line with the observed phenotypes, we found that both TMEM41B- and VMP1-deficient cells harbor higher levels of compromised mitochondria, especially in VMP1 deficiency which results in severe dysregulations of mitochondrial beta-oxidation. Using a metabolomic profiling approach, we revealed distinctive global dysregulations of the cellular metabolome, particularly lipidome, in TMEM41B- and VMP1-deficient cells. Our findings highlight a central role for TMEM41B and VMP1 in modulating multiple cellular pathways, including lipid mobilization, mitochondrial beta-oxidation, and global metabolic regulations, to facilitate the replication of flaviviruses and coronaviruses.


Assuntos
Infecções por Coronavirus , Coronavirus , Dengue , Metabolismo Energético , Humanos , Lipídeos , Proteínas de Membrana/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA